
261

A Pretty Expressive Printer (with Appendices)
SORAWEE PORNCHAROENWASE, University of Washington, USA
JUSTIN POMBRIO, Unaffiliated, USA
EMINA TORLAK, University of Washington, USA

Pretty printers make trade-offs between the expressiveness of their pretty printing language, the optimality

objective that they minimize when choosing between different ways to lay out a document, and the performance

of their algorithm. This paper presents a new pretty printer, Π𝑒 , that is strictly more expressive than all pretty
printers in the literature and provably minimizes an optimality objective. Furthermore, the time complexity of
Π𝑒 is better than many existing pretty printers. When choosing among different ways to lay out a document,
Π𝑒 consults a user-supplied cost factory, which determines the optimality objective, giving Π𝑒 a unique degree
of flexibility. We use the Lean theorem prover to verify the correctness (validity and optimality) of Π𝑒 , and
implement Π𝑒 concretely as a pretty printer that we call PrettyExpressive. To evaluate our pretty printer
against others, we develop a formal framework for reasoning about the expressiveness of pretty printing
languages, and survey pretty printers in the literature, comparing their expressiveness, optimality, worst-case
time complexity, and practical running time. Our evaluation shows that PrettyExpressive is efficient and
effective at producing optimal layouts. PrettyExpressive has also seen real-world adoption: it serves as a
foundation of a code formatter for Racket.

CCS Concepts: • Software and its engineering → Functional languages; • Mathematics of computing
→ Combinatorial optimization.

Additional Key Words and Phrases: pretty printing

ACM Reference Format:
Sorawee Porncharoenwase, Justin Pombrio, and Emina Torlak. 2023. A Pretty Expressive Printer (with Appen-
dices). Proc. ACM Program. Lang. 7, OOPSLA2, Article 261 (October 2023), 34 pages. https://doi.org/10.1145/
3622837

1 INTRODUCTION
General-purpose pretty printers (or, simply, printers) are widely used to convert structured data—
typically an AST—into human-readable text. Their applications include code reformatting, software
reengineering, and synthesized code printing [De Jonge 2002; Prettier 2016; Torlak and Bodik
2014; Yelland 2015]. These printers take as inputs (1) a document in a pretty printing language
(PPL), which encodes the structured data along with formatting choices, and (2) a page width limit.
Choices in the document can yield exponentially many possible layouts. The task of the printers
then is to efficiently choose an optimal layout from all possible layouts. Existing printers use a
variety of built-in optimality objectives. A good objective reflects the informal notion of “prettiness,”
such as not overflowing past the page width limit whenever possible, while having as few lines as
possible.

Authors’ addresses: Sorawee Porncharoenwase, Paul G. Allen School of Computer Science & Engineering, University of
Washington, Seattle, WA, USA, sorawee@cs.washington.edu; Justin Pombrio, Unaffiliated, Cambridge, MA, USA, jpombrio@
cs.brown.edu; Emina Torlak, Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle,
WA, USA, emina@cs.washington.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2023 Copyright held by the owner/author(s).
2475-1421/2023/10-ART261
https://doi.org/10.1145/3622837

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 261. Publication date: October 2023.

HTTPS://ORCID.ORG/0000-0003-3900-5602
HTTPS://ORCID.ORG/0009-0004-0244-6193
HTTPS://ORCID.ORG/0000-0002-1155-2711
https://doi.org/10.1145/3622837
https://doi.org/10.1145/3622837
https://orcid.org/0000-0003-3900-5602
https://orcid.org/0009-0004-0244-6193
https://orcid.org/0000-0002-1155-2711
https://doi.org/10.1145/3622837

261:2 Sorawee Porncharoenwase, Justin Pombrio, and Emina Torlak

Different printers make different trade-offs in the expressiveness of the PPL, the optimality

objective, and the performance. This paper presents a printer that we call Π𝑒 . It targets Σ𝑒 , a
PPL that is strictly more expressive than all published PPLs. This can be shown via our formal
framework for reasoning about the expressiveness of PPLs. Π𝑒 is parameterized by a cost factory,
which enables users to specify an optimality objective for Π𝑒 to minimize. The cost factory is
versatile. For example, it can express non-linear costs and define concepts such as soft page width
limits [Yelland 2016]. As a result, the optimal layout that Π𝑒 chooses can have higher quality
compared to existing printers. The time complexity of Π𝑒 is 𝑂 (𝑛𝑊 4), where 𝑛 is the size of the
document and𝑊 is the computation width limit (defined in Section 6). This is better than the time
complexity of many printers in the literature, and it is improved to 𝑂 (𝑛𝑊 3) when Π𝑒 is restricted
to process documents in some well-known but less expressive PPLs. We prove the correctness of
Π𝑒 in the Lean theorem prover [Moura and Ullrich 2021], ensuring the validity and optimality of
the output layout, and demonstrate Π𝑒 ’s efficiency by evaluating our implementation of Π𝑒 , which
we call PrettyExpressive. We believe these attributes make Π𝑒 not only a good printer by itself,
but also a good building block to construct other derived printers.

A Survey of Printers in the Wild. To evaluate Π𝑒 , we conducted a broad survey of the literature on
pretty printing. Most PPLs, embedded in a host programming language, provide a small set of core
constructs that allow users to create a document with text, concatenate documents together, set
indentation level, and express formatting choices. High-level constructs can then be built on top of
the core constructs. The details of these core constructs can differ from PPL to PPL. We found that
there are two main schools of PPLs in the wild, which we call the traditional and arbitrary-choice

PPLs. The traditional PPL centers around manipulation of nls (newlines) and current indentation
level, while the arbitrary-choice PPL is characterized by the ability to express arbitrary formatting
choices and the use of aligned concatenation to supplant the concept of indentation level. Figure 1
illustrate documents in both PPLs that pretty-print the function definition append in a hypothetical
programming language with slightly different styling.

Expressiveness. The literature contains informal claims about the expressiveness of PPLs [Chitil
2005; Podkopaev and Boulytchev 2015; Wadler 2003]. We develop two formal notions of expres-
siveness: the ability to express layouts and the ability to express features. The former reflects the
functionality of a PPL, while the latter reflects the ease of document construction. Using our frame-
work, we can show that neither the traditional PPL nor the arbitrary-choice PPL is more expressive
than the other. For example, the set of layouts in Figure 1b cannot be expressed by any document
in the traditional PPL. This is because all layouts due to a particular document in the traditional
PPL must be the same modulo whitespace, but one of the layouts in the figure has an extra pair of
parentheses.1 As another example, the document in Figure 1b is awkwardly constructed, because the
document structure and the underlying AST structure do not match (Section 5.3). It would be more
natural to use unaligned concatenation, but the feature cannot be expressed by any combination of
features in the arbitrary-choice PPL.2 To that end, we develop a PPL called Σ𝑒 that is strictly more
expressive than both the traditional and arbitrary-choice PPLs, facilitating both functionality and
ease of document construction.

1Languages such as Python require an extra pair of parentheses around an expression that spans multiple lines [The Python
Language Reference 2010]. Similarly, some styles prefer adding an extra comma (also known as trailing comma) when a
function call spans multiple lines [ESLint 2014]. Hence, the ability to express layouts with differing content is desirable.
2Different programming language styles prefer different concatenation operators. C-like languages heavily use unaligned
concatenation, while aligned concatenation has been used for Haskell, Lisp, R, and Julia. However, there are instances where
C-like languages would benefit from aligned concatenation, and Haskell would benefit from unaligned concatenation.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 261. Publication date: October 2023.

A Pretty Expressive Printer (with Appendices) 261:3

text "function␣append(first,second,third){"|
<> nest 4 (|
let f = text "first␣+" in|
let s = text "second␣+" in|
let t = text "third" in|
nl <> text "return␣" <>|
group (nest 4 (f <> nl <> s <> nl <> t))|

) <> nl <> text "}"|

1 function append(first,second,third){ |
2 return first +|
3 second + |
4 third|
5 } |

1 function append(first,second,third){ |
2 return first + second + third|
3 } |

(a) A document in the traditional PPL and its corresponding layouts. The nest construct increments the

current indentation level by some specified amount, causing nl (newline) to insert indentation spaces. <>
is the unaligned concatenation operator, which places the right sub-layout after the left sub-layout on the

current indentation level. Lastly, the group construct creates a choice between two alternatives: one where the

sub-layouts are left alone and one where the sub-layouts are flattened by replacing newlines and indentation

spaces due to nls in the group with single spaces.

text "function␣append(first,second,third){" <$>|
(let f = text "first␣+" in|

let s = text "second␣+" in|
let t = text "third" in|
let sp = text "␣" in|
let ret = text "return␣" in|
text "␣␣␣␣" <+>|
(((ret <+> text "(") <$> |

(text <+> (f <$> s <$> t)) <$>|
text ")") <|>|
(ret <+> f <+> sp <+> s <+> sp <+> t)))|

<$> text "}"|

"␣␣␣␣"

1 function append(first,second,third){ |
2 return (|
3 first +|
4 second +|
5 third |
6)|
7 } |

1 function append(first,second,third){ |
2 return first + second + third|
3 } |

(b) A document in the arbitrary-choice PPL and its corresponding layouts. <|> is the arbitrary-choice operator,
which per its namesake, creates a choice between the layouts of two arbitrary sub-documents. <$> is the

vertical concatenation operator, which joins two sub-layouts with a newline. Lastly, <+> is the aligned

concatenation operator, which joins two sub-layouts horizontally, aligning the whole right sub-layout at the

column where it is to be placed in.

Fig. 1. The traditional and arbitrary-choice PPLs, embedded in the host language OCaml. Colored regions in

a document and corresponding layouts indicate the correspondence between the colored sub-documents and

the colored sub-layouts. We use the let construct to make the documents easier to read, even though it is

usually not a part of PPLs. Dotted lines illustrate different page width limits at 22 and 36 characters.

Optimality. The optimality objective of a printer indicates what it optimizes for when resolving
choices. Most printers targeting the traditional PPL minimize overflow past the page width limit
line-by-line, preferring a longer line when there is no overflow. For example, given the document
in Figure 1a, the first layout is optimal when the page width limit is 22 (red dotted line), while the
second layout is optimal when the page width limit is 36 (green dotted line). Contrary to prior
claims [Chitil 2005; Wadler 2003], we discovered that this strategy guarantees neither the absence
of overflow whenever possible nor the minimality of the number of lines. By contrast, most printers
targeting the arbitrary-choice PPL minimize the number of lines among layouts with no overflow.
However, they error when all possible layouts have an overflow, resulting in a poor user experience
(e.g., when the page width limit is 22 in Figure 1b). Recognizing that unavoidable overflows do
occur in practice, we introduce the concept of a cost factory, which allows users to choose a desired
objective permitted by its interface, including an objective that tolerates overflow gracefully.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 261. Publication date: October 2023.

261:4 Sorawee Porncharoenwase, Justin Pombrio, and Emina Torlak

Performance. Printing proceeds in two phases: resolving choices and rendering the optimal choice
to text (although many printers fuse these two phases together). Time complexity of printers is best
measured against the resolving phase3, and it is usually specified with two parameters: the size of
the document 𝑛 and the width limit𝑊 , with the preference that the time complexity be polynomial
in𝑊 and linear in 𝑛. Most printers in the literature leave their time complexity unanalyzed, instead
opting to show experimental results that their implementations are efficient in practice. We analyze
these printers and demonstrate documents that trigger worse than linear time behavior (in 𝑛) on
some printers. Further complication arises in printers with the arbitrary choice feature, which gives
rise to documents that are structured as DAGs as opposed to trees. We show that many printers that
treat the input document as a tree suffer from a combinatorial explosion as the DAG structure is
unfolded during the resolving phase, resulting in exponential time complexity. With a combination
of proof and experimental results, we show that the time complexity of Π𝑒 is linear in the DAG
size of the document and that it runs fast in practice.

In summary, this paper makes the following contributions:
• A new PPL called Σ𝑒 that is strictly more expressive than all published PPLs. The constructs
in Σ𝑒 are not new, but packaging them all in a single PPL has never been done before.

• A printer Π𝑒 targeting Σ𝑒 that utilizes a cost factory to allow a variety of optimality objectives.
• A proof of correctness (validity and optimality) for Π𝑒 , formalized in the Lean theorem prover.
To our knowledge, this is the first time that a printer has been formally verified.

• A framework to formally reason about the expressiveness of PPLs.
• A survey of printers and an analysis that dispels common misunderstandings about them.
• An implementation of Π𝑒 , PrettyExpressive, and an evaluation that shows its effectiveness.

The rest of this paper is structured as follows. Section 2 surveys the related work. Section 3
provides an overview of Π𝑒 from the user’s perspective. Section 4 presents the formal semantics
of Σ𝑒 . Section 5 introduces a framework to reason about the expressiveness of PPLs. Section 6
formally presents Π𝑒 and its analysis. Section 7 discusses PrettyExpressive, an implementation
of Π𝑒 . Section 8 presents an evaluation of PrettyExpressive that demonstrates its effectiveness.
Lastly, Section 9 concludes the paper.

2 RELATEDWORK
To understand the trade-off space of printer designs, we conduct a comprehensive analysis of
related work in the literature. This section provides our analysis of the printers, grouped by the
expressiveness of their public interface4. The summary is presented in Table 1. We then compare
and contrast our printer Π𝑒 against them.

2.1 Traditional Printers
Pretty printing has a long history. Oppen [1980] first introduced a general-purpose printer, written
in the imperative style. Oppen pioneered the PPL that we call the traditional PPL, shown in Figure 2a.
Instead of representing an input document as a tree, as commonly done in subsequent work, Oppen
represents the document as a stream of “instruction tokens.” The algorithm’s time complexity
is 𝑂 (𝑛), where 𝑛 is the length of the stream. Furthermore, the algorithm is bounded, requiring
a limited look-ahead into the stream. As with other printers in this family, the printer greedily

3This formulation allows us to talk about “linear-time” printers, even though there are, e.g., documents whose size is𝑂 (𝑛) ,
but its optimal layout has𝑂 (𝑛2) characters.
4In practice, printers include extensions that increase their expressiveness. A printer may even have different expressiveness
across different versions. This section focuses on the core features of these printers as specified in their publications.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 261. Publication date: October 2023.

A Pretty Expressive Printer (with Appendices) 261:5

Table 1. A comparison of existing printers. 𝑛 and �̂� are the DAG size and tree size of the input document

(where �̂� in the worst case is exponential in 𝑛).𝑊 is the width limit.

Expressiveness Optimality Performance

Printer Choice Concatenation Minimization objective Time complexity

Oppen [1980] Group Unaligned Lexicographic overflow 𝑂 (𝑛)
Hughes [1995] Group Aligned Lexicographic overflow 𝑂 (𝑛2)
Wadler [2003] Group Unaligned Lexicographic overflow 𝑂 (𝑛2)
Leijen [2000] Group Both Lexicographic overflow 𝑂 (𝑛2)
Chitil [2005] Group Unaligned Lexicographic overflow 𝑂 (𝑛)
Kiselyov et al. [2012] Group Unaligned Lexicographic overflow 𝑂 (𝑛)
Swierstra et al. [1999] Arbitrary Aligned Height† Exp. in 𝑛
Podkopaev and Boulytchev [2015] Arbitrary Aligned Height† 𝑂 (�̂�𝑊 4)
Yelland [2016] Arbitrary Aligned Linear cost 𝑂 (�̂�3/2)
Bernardy [2017c] Arbitrary Aligned Height† 𝑂 (𝑛𝑊 6)

Π𝑒 Both Both Cost (from the cost factory) 𝑂 (𝑛𝑊 4)
Π𝑒 (aligned only) Both Aligned Cost (from the cost factory) 𝑂 (𝑛𝑊 3)
† only consider layouts without an overflow past𝑊 .

𝑑 ∈ D F text 𝑠 text
| nl newline
| 𝑑 <> 𝑑 unaligned concatenation
| nest 𝑛 𝑑 increase the indentation level by 𝑛
| group 𝑑 a choice between

flattening or not flattening

(a) A variant of traditional PPL from Wadler [2003].

𝑑 ∈ D F text 𝑠 text
| 𝑑𝑎 <+> 𝑑𝑏 aligned concatenation
| 𝑑𝑎 <$> 𝑑𝑏 vertical concatenation
| 𝑑𝑎 <|> 𝑑𝑏 an arbitrary choice

(b) A variant of arbitrary-choice PPL from

Podkopaev and Boulytchev [2015].

Fig. 2. A comparison between the traditional and arbitrary-choice PPLs. 𝑠 denotes a string without newline,

and 𝑛 denotes a natural number.

minimizes overflow past the page width limit, which neither avoids overflow whenever possible
nor minimizes number of lines, as discussed in Oppen’s paper.
Wadler [2003] designed a printer that targets the traditional PPL. It is used in many real world

applications, such as an industrial code formatter [Prettier 2016], and as a basis for much pretty
printing research [Chitil 2005; Kiselyov et al. 2012]. The printer aims to be a rewrite of Oppen’s
printer using the functional style employed by Hughes (described later). The printer is claimed [Chi-
til 2005; Wadler 2003] to produce an output layout that does not exceed the width limit whenever
possible, and minimizes the number of lines. However, this is not the case, as shown in Figure 16
in Appendix A. The time complexity of the printer is claimed to be 𝑂 (𝑛) where 𝑛 is the size of
document [Wadler 2003], but it is in fact 𝑂 (𝑛2) in the worst case, as demonstrated in Figure 17,
although this worst case behavior is unlikely to occur in practice.

Chitil [2005] improved Wadler’s printer so that it is as efficient as Oppen’s, 𝑂 (𝑛), by using lazy
dequeues. Kiselyov et al. [2012] similarly improved Wadler’s printer via their generator framework.

Compared to traditional printers, Π𝑒 is more expressive as it allows arbitrary choices and aligned
concatenation. Furthermore, Π𝑒 can produce an output layout that minimizes number of lines when
the output layout does not exceed the page width limit, and does not exceed the page width limit
whenever possible. The tradeoff is that Π𝑒 is less space efficient and slower than traditional printers.
The space complexity of traditional printers is sub-linear in the size of document, which was
especially important decades ago when memory is scarce. The space complexity of Π𝑒 is 𝑂 (𝑛𝑊 3)

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 261. Publication date: October 2023.

261:6 Sorawee Porncharoenwase, Justin Pombrio, and Emina Torlak

let shared := 𝐷 in (shared <> text "!") <|> ((shared <> nl) <> text "!")

(a) A document that encodes (at least) two possible layouts. 𝐷 is an arbitrary sub-document.

<|>

<> <>

text "!" text "!"

𝐷

<>

nl𝐷

(b) A tree representation of Figure 3a.

𝐷 contributes to the size twice.

<|>

<> <>

text "!" text "!"<>

nl𝐷

(c) A DAG representation of Figure 3a.

𝐷 contributes to the size only once.

Fig. 3. An example document that shows the importance of treating document as a DAG rather than a tree.

The red and pink paths illustrate that the DAG is properly shared, as will be discussed in Section 6.4.

in the worst case (or 𝑂 (𝑛𝑊 2) when targeting some PPLs). We find that, on modern machines, the
added memory consumption and performance overhead are rarely an issue in practice (Section 8).

2.2 Arbitrary-Choice Printers
Azero Alcocer and Swierstra [1998] introduced a printer that supports aligned concatenation
and choices between arbitrary alternatives. It started the line of work that targets the arbitrary-
choice PPL, shown in Figure 2b. The printer’s optimality objective is to avoid overflow whenever
possible and produce a minimal number of lines. However, it does not have the ability to cope with
unavoidable overflow. This printer was soon superseded by Swierstra et al. [1999], which improves
its performance via heuristics and adds the capability to share a sub-document across choices by
deeply embedding the (equivalent of a) let construct in the PPL. As a result, the later printer can
process documents that are structured as DAGs rather than trees, as shown in Figure 3. Nonetheless,
the time complexity of both printers is exponential in 𝑛 [Podkopaev and Boulytchev 2015].
Podkopaev and Boulytchev [2015] improved upon Swierstra et al.’s work by formulating the

problem as dynamic programming. This fixes the exponential blowup in the prior work, but treats
the document as a tree, making its time complexity𝑂 (�̂�𝑊 4), where �̂� is the tree size of the document,
which could be exponentially larger than its DAG size. The paper acknowledges the problem and
surmises that memoization may be able to address it.
The paper by Bernardy [2017c] is the main inspiration for our work. The printer uses Pareto

frontiers to find an optimal layout. By shallowly embedding the PPL (in Haskell), computations
on sub-documents are effectively shared for free. However, as presented in the paper, the printer
requires the page width limit to be hard-coded. In the actual implementation [Bernardy 2017b],
the page width limit is customizable, accomplished by threading the value through functions. But
this change destroys the shared computations, leading to exponential running time. Compared to
Podkopaev and Boulytchev [2015]’s work, Bernardy [2017c]’s approach can exploit sparseness to
improve practical efficiency, but the use of an inefficient algorithm makes the time complexity of
the printer 𝑂 (𝑛𝑊 6) in the worst case. While the paper does not handle unavoidable overflow, the
implementation does by automatically scaling up the page width limit (or equivalently, minimizing
the maximum overflow). This, however, allows avoidable overflow elsewhere, as shown in Figure 18
in Appendix A, which is undesirable. Later on, Bernardy abandoned the arbitrary-choice operator,
noting that it could trigger the exponential behavior [Bernardy 2017a].

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 261. Publication date: October 2023.

A Pretty Expressive Printer (with Appendices) 261:7

Yelland [2016] similarly targeted the arbitrary-choice PPL. However, the paper took a very
different approach. The core printer restricts the use of aligned concatenation by requiring the
left sub-document to be a text syntactically. This restriction allows the core printer to utilize
the concept of “piecewise linear cost function” to seemingly boost its performance. To achieve
the expressiveness of the arbitrary-choice PPL, the printer employs rewriting rules to transform
the original document into the restricted document. While the work carefully avoids exponential
blowup by sharing sub-documents in the resulting restricted document, it does not necessarily
preserve the sharing structure of the original document, as demonstrated in Figure 19 in Appendix A.
Compound this with the lack of a computation width limit, and the number of piecewise linear cost
functions under consideration could be as large as 𝑂 (�̂�1/2), making the time complexity 𝑂 (�̂�3/2) in
total, as shown in Figure 20. Another aspect to consider is the printer’s optimality objective, which
is restricted to minimizing a linear combination of quantities like the number of lines and overflow.
Hence, the work will not technically avoid overflow whenever possible (although the overflow
coefficient can be made arbitrarily large to arbitrarily discourage overflow). On the other hand, this
optimality objective can support unique features, such as incorporating the costs due to multiple
soft page width limits.

Compared to arbitrary-choice printers,Π𝑒 is more expressive as it allows unaligned concatenation.
Π𝑒 is also asymptotically faster than most arbitrary-choice printers, as it treats a document as a DAG
rather than a tree. Like Yelland’s printer, for each layout under consideration, Π𝑒 keeps track of two
quantities: cost and last line length. This is different from most printers in the family which keep
track of three quantities: height, width, and last width. The dimension reduction further makes Π𝑒

more efficient. The concept of cost also allows Π𝑒 to decouple the page width limit and computation
width limit, which allows graceful overflow handling. Π𝑒 , unlike Yelland’s printer, is parameterized
by a cost factory, which supports a variety of optimality objectives without requiring a modification
to the core printer. This includes not only the linear optimality objectives that Yelland’s printer
supports, but also non-linear optimality objectives that can properly avoid overflows.

2.3 Other Printers
Coutaz [1984] introduced one of the earliest document abstractions for user interfaces. The abstrac-
tion is very general: it can not only describe text layout, but also image and objects on computer
screen. Due to its minimality, it is much less expressive than other printers for textual printing.

Hughes [1995] brought pretty printing to the functional world. The work pioneers using combi-
nators to construct a document for pretty printing, which is now a standard practice. The printer
targets a PPL that is neither the traditional nor arbitrary-choice PPL, but somewhere in-between.
In particular, it only supports aligned concatenation and does not provide the arbitrary-choice
operator in the public interface. The work is more similar to the traditional printers in how it makes
choices greedily, which minimizes neither overflow nor number of lines. The combination of greedy
choice making and aligned concatenation makes some documents print very poorly [Bernardy
2017c]. Furthermore, Peyton-Jones [1997] identified quadratic time complexity in the printer.
Leijen [2000] implemented Wadler’s printer in Haskell and added support for aligned con-

catenation via the inclusion of align, becoming the first printer that supports both aligned and
unaligned concatenation. However, similar to Hughes’ printer, the printer can produce very poor
output [Bernardy 2017c].

3 AN OVERVIEW OF Π𝑒

Π𝑒 takes as inputs a document in Σ𝑒 , a cost factory, and a computation width limit, and returns a
textual layout. This section provides an overview of Π𝑒 from the user’s perspective—what form the
inputs take, and how they interact to produce a layout.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 261. Publication date: October 2023.

261:8 Sorawee Porncharoenwase, Justin Pombrio, and Emina Torlak

Document 𝑑 ∈ D𝑒 F text 𝑠 | nl | 𝑑 <> 𝑑 | nest 𝑛 𝑑 |
align 𝑑 | flatten 𝑑 | 𝑑 <|> 𝑑

String without newline 𝑠, 𝑡, . . . ∈ Str

Natural number 𝑛 ∈ N

Fig. 4. Syntax for Σ𝑒

|
|

|
|

|

𝑑𝑎

𝑑𝑏

(a) An unaligned concatenation of 𝑑𝑎 and 𝑑𝑏

|
|

|

𝑛

𝑑

(b) A nest of 𝑑 to increase

the indentation level by 𝑛

|
|

|
𝑑

𝑐

(c) An align of𝑑 when rendered
at the column position 𝑐

Fig. 5. Illustrations of constructs in Σ𝑒 . The area with dashed borders is the resulting layout.

3.1 Documents in Σ𝑒

Like other printers, Π𝑒 allows users to construct a document to encode a structured data along
with formatting choices. The document can be evaluated to a set of layouts, and Π𝑒 will pick an
optimal layout from this set as the output.

The document is written in the Σ𝑒 syntax, shown in Figure 4. Each construct is from either the
traditional or the arbitrary-choice PPLs, except for the flatten construct (which is used internally
in Wadler [2003]’s printer) and the align construct (which is from Leijen [2000]’s printer).

For now, we ignore the (arbitrary-) choice operator <|>. A document without the choice operator
is called a choiceless document, denoted by 𝑑 ∈ D𝑒 . A choiceless document can be rendered at
a column position 𝑐 and an indentation level 𝑖 (both default to 0) to produce a single layout. The
informal semantics of choiceless document are as follows:

text 𝑠 renders to a layout with a single line 𝑠 .
nl normally renders to a layout with two lines. The first line is empty, and the

second line consists of 𝑖 spaces. nl interacts with flattening, which reduces it to
just a single space.

𝑑𝑎 <> 𝑑𝑏 renders to a layout that concatenates the layout of 𝑑𝑎 and the layout of 𝑑𝑏 . This
is the unaligned concatenation from the traditional PPL, illustrated in Figure 5a.

nest 𝑛 𝑑 renders to a layout like 𝑑 , but with the indentation level 𝑖 relatively increased by
𝑛. Figure 5b illustrates this.

align 𝑑 renders to a layout like 𝑑 , but with alignment: the indentation level 𝑖 is set (not
relatively increased) to the column position 𝑐 . Figure 5c illustrates this.

flatten 𝑑 renders to a layout like 𝑑 , but with all newlines and indentation spaces due to
nls flattened to single spaces.

Example 3.1. When the following choiceless document is rendered at column position 3 and
indentation level 0, it produces the second layout in Figure 7:
text "=␣func(" <> nest 2 (nl <> text "pretty," <> nl <> text "print") <> nl <> text ")"

While Figure 5 provides a rough illustration that should be helpful to understand the semantics
of choiceless document, it could be misleading, as shown in the next example.

Example 3.2. The document text "a" <> (nest 42 (align (text "b" <> nl <> text "c"))) is
rendered at the column position and indentation level 0 to a layout with two lines: "ab" and "␣c".

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 261. Publication date: October 2023.

A Pretty Expressive Printer (with Appendices) 261:9

Cost type 𝜏
≤F : 𝜏 → 𝜏 → B ≤F must be a total ordering (transitive, antisymmetric, and total)
+F : 𝜏 → 𝜏 → 𝜏 ∀C1, C2, C3, C4 ∈ 𝜏 . [C1 ≤F C2 → C3 ≤F C4 → C1 +F C3 ≤F C2 +F C4]

textF : N→ N→ 𝜏 ∀𝑐, 𝑐′, 𝑙 ∈ N. [𝑐 ≤ 𝑐′ → textF (𝑐, 𝑙) ≤F textF (𝑐′, 𝑙)]
nlF : 𝜏 ∀𝑐, 𝑙1, 𝑙2 ∈ N. textF (𝑐, 𝑙1 + 𝑙2) = textF (𝑐, 𝑙1) +F textF (𝑐 + 𝑙1, 𝑙2)

+F must be associative, with the identity that is textF (0, 0)
∀𝑐 ∈ N. textF (𝑐, 0) = textF (0, 0)

Fig. 6. The cost factory interface. Users need to supply the cost type 𝜏 and implement the operations satisfying

the contracts indicated in the interface.

1 = func(pretty, print)|3
1 = func(|
2 pretty,|
3 print|
4) |

3

Fig. 7. Two example layouts to illustrate how a cost factory computes their costs. Both layouts are rendered

at column position 3. The dotted lines shows the width limit of 6 and 14.

The nesting doesn’t visibly increase the indentation level by 42. To see why, note that nest 42 ...

is rendered at the column position 1 and indentation level 0. Subsequently, align ... is rendered
at the column position 1 and indentation level 42. Then, text "b" <> nl <> text "c" is rendered
at the column position 1 and indentation level 1. That is, the alignment on the inner document
overrides the indentation level. This example shows the importance of the indentation level, and
why it must be specifically tracked.

This concludes our informal description of how a choiceless document renders to a layout.
General documents, by contrast, can contain the (arbitrary-) choice operator <|>, which provides
a choice among the layouts from two sub-documents. Thus, unlike choiceless documents, which
render to a single layout, general documents will evaluate to a non-empty, finite set of layouts.
Intuitively, this is done by first widening a document into a set of choiceless documents, then
rendering each choiceless document in the set, producing a set of layouts.

Example 3.3. The document (text "a" <|> text "b") <> (text "c" <|> text "d") widens to
four choiceless documents: text "a" <> text "c", text "a" <> text "d", text "b" <> text "c",
and text "b" <> text "d". Thus, the document evaluates (with column position and indentation
level 0) to a set of four layouts: "ac", "ad", "bc", and "bd".

3.2 Cost Factory
To pick an optimal layout from the set of layouts that a document evaluates to, Π𝑒 needs to be

able to compute a cost for each layout, and to compare these costs to find a layout with minimal
cost. To accommodate a wide range of optimality objectives, we allow the user to specify a cost
type 𝜏 and implement operations on the cost type:

• a procedure textF (𝑐, 𝑙) that computes the cost of text starting at column 𝑐 of length 𝑙
• a constant nlF that gives the cost of a newline5
• a procedure +F that adds two costs together
• a procedure ≤F that compares two costs

We call this set of parameters a cost factory. These parameters cannot be arbitrary, however. For
example, the cost of "hello␣world" placed at column 10 should be the same as the cost of "hello␣"
5In our Lean formalization and actual implementation, nlF is a procedure. See Section 7 for details.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 261. Publication date: October 2023.

261:10 Sorawee Porncharoenwase, Justin Pombrio, and Emina Torlak

placed at column 10 combined with the cost of "world" placed at column 16.6 Thus, a valid cost
factory also needs to additionally satisfy the contracts listed in Figure 6.7 The first three contracts
allowΠ𝑒 to efficiently prune away suboptimal costs during incremental cost computation (Section 6),
and the last three contracts ensure that the concept of the cost for a layout is well-defined.
With a cost factory, we can inductively compute the cost of a layout with lines 𝑙1, 𝑙2, . . . , 𝑙𝑛

rendered at column position 𝑐:

Cost([𝑙1], 𝑐) = textF (𝑐, |𝑙1 |)
Cost([𝑙1, 𝑙2, . . . , 𝑙𝑛−1, 𝑙𝑛], 𝑐) = Cost([𝑙1, 𝑙2, . . . , 𝑙𝑛−1], 𝑐) +F nlF +F textF (0, |𝑙𝑛 |)

Π𝑒 can then use ≤F to find an optimal layout. The following example shows a concrete cost
factory and how it can be used to pick an optimal layout among the layouts in Figure 7.

Example 3.4. Consider an optimality objective that minimizes the sum of overflows (the number
of characters that exceed a given page width limit 𝑤 in each line), and then minimizes the height
(the total number of newline characters, or equivalently, the number of lines minus one). This
objective is thus able to avoid the excessive overflow problem in Bernardy’s printer described in
Section 2.
More concretely, the cost of a layout is a pair of the overflow sum and the height, where

lexicographic order determines which cost is less. With𝑤 = 6, the first layout in Figure 7 has the
cost (20, 0), whereas the second layout has the cost (4 + 3 + 1 + 0, 3) = (8, 3). Thus, the second
layout is the optimal layout that Π𝑒 should pick.

We implement this optimality objective with the following cost factory F .

𝜏 = N × N ≤F = ≤lex (𝑜𝑎, ℎ𝑎) +F (𝑜𝑏, ℎ𝑏) = (𝑜𝑎 + 𝑜𝑏, ℎ𝑎 + ℎ𝑏)

textF (𝑐, 𝑙) = (max(𝑐 + 𝑙 −max(𝑤, 𝑐), 0), 0) nlF = (0, 1)
According to F , the first layout has cost textF (3, 26) = (20, 0), while the second layout has

the cost textF (3, 7) +F nlF +F textF (0, 9) +F nlF +F textF (0, 7) +F nlF +F textF (0, 1) = (8, 3), as
expected.

The cost factory interface is versatile. The above example shows that Π𝑒 does not need to take a
page width limit as an input, because the concept of page width limit can already be defined by
users via textF . It is also possible, for example, to implement soft width limits, or to compute a
linear combination of height and overflow in the style of Yelland [2016]. The rest of this section
provides a couple more examples of other valid and invalid cost factories.

Example 3.5. The following cost factory targets an optimality objective that minimizes the sum
of squared overflows over the page width limit𝑤 , and then the height. This optimality objective
is an improvement over the one in Example 3.4 by discouraging overly large overflows. With
𝑤 = 6, the first layout in Figure 7 has the cost (202, 0) whereas the second layout has the cost
(42 + 32 + 12 + 02, 3) The text cost formula is derived from the identity (𝑎 + 𝑏)2 − 𝑎2 = 𝑏 (2𝑎 + 𝑏)
where in each text placement, 𝑎 is the starting position count past𝑤 and 𝑏 is the overflow length.
This is (essentially) the default cost factory that our implementation, PrettyExpressive, employs.

𝜏 = N × N ≤F = ≤lex (𝑜𝑎, ℎ𝑎) +F (𝑜𝑏, ℎ𝑏) = (𝑜𝑎 + 𝑜𝑏, ℎ𝑎 + ℎ𝑏) nlF = (0, 1)

textF (𝑐, 𝑙) =
{
(𝑏 (2𝑎 + 𝑏), 0) if 𝑐 + 𝑙 > 𝑤

(0, 0) otherwise
where

𝑎 = max(𝑤, 𝑐) −𝑤

𝑏 = 𝑐 + 𝑙 −max(𝑤, 𝑐)
6In other words, the cost of a long text should be able to be broken down into the costs of its characters.
7For mathematical readers, a (valid) cost factory forms a totally ordered monoid with translational invariance.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 261. Publication date: October 2023.

A Pretty Expressive Printer (with Appendices) 261:11

Example 3.6. The following cost factory targets an optimality objective that minimizes the
maximum overflow over the page width limit𝑤 . With𝑤 = 6, the first layout in Figure 7 has the
cost 20 whereas the second layout has the cost max(4, 3, 1, 0) = 4.

𝜏 = N ≤F = ≤ 𝑚𝑎 +F 𝑚𝑏 = max(𝑚𝑎,𝑚𝑏) nlF = 0

textF (𝑐, 𝑙) =
{
0 if 𝑙 = 0
max(0, 𝑐 + 𝑙 −𝑤) otherwise

The above cost factories are all valid. This is proven with automated theorem proving via Rosette
4 [Porncharoenwase et al. 2022; Torlak and Bodik 2014] and Z3 [De Moura and Bjørner 2008].

Theorem 3.7. The cost factories in Example 3.4, Example 3.5, and Example 3.6 are valid.

Example 3.8. The following invalid cost factory intends to target an optimality objective that
minimizes the maximum overflow over the page width limit𝑤 , and then the height. However, the
second contract is violated, because (0, 1) +F (2, 0) ≤F (1, 0) +F (2, 0) does not hold.

𝜏 = N × N ≤F = ≤lex (𝑚𝑎, ℎ𝑎) +F (𝑚𝑏, ℎ𝑏) = (max(𝑚𝑎,𝑚𝑏), ℎ𝑎 + ℎ𝑏) nlF = (0, 1)

textF (𝑐, 𝑙) =
{
(0, 0) if 𝑙 = 0
(max(0, 𝑐 + 𝑙 −𝑤), 0) otherwise

3.3 W, the Computation Width Limit
The last input to Π𝑒 is W, the computation width limit. When printing a document 𝑑 , Π𝑒 only
provides the optimality guarantee among layouts evaluated from 𝑑 whose column position or
indentation level during the printing process does not exceedW. For each choiceless document
widened from 𝑑 , when its rendering causes a column position or indentation level to exceed the
computation width limit, the rendering is tainted. For example, if a document evaluates to two
layouts in Figure 7, with W = 14, the rendering to the first layout would be tainted, while the
rendering to the second layout would not (assuming the indentation level during the rendering
doesn’t exceed the limit). Layouts from tainted rendering can usually be discarded right away,
except when every possible rendering is tainted. In such case, Π𝑒 keeps one layout so that it can
still output a layout, but provides no guarantee that the layout will be optimal. The tainting system
allows us to bound the computation so that the algorithm is efficient.

4 THE SEMANTICS OF Σ𝑒

This section formally presents Σ𝑒 , an expressive PPL. We begin this section by describing layouts,
which are the textual outputs. Then, we formally describe the semantics of Σ𝑒 , which is determined
by the evaluation of a document in Σ𝑒 to a set of layouts.

4.1 Layouts
A layout 𝑙 ∈ L is a textual output. We represent a layout as a non-empty, finite list of lines (implicitly
joined by newlines), where each line is a string without the newline character.8 This allows us to
easily reason about the number of lines and the length of each line. The first line of a layout can be
put at an arbitrary column position (depending on which column position it is rendered at), but
subsequent lines must be put at the column position 0.

Example 4.1. The second layout in Figure 7 is ["func(", "␣␣pretty,", "␣␣print", ")"], which is
rendered at the column position 3.
8The representation in our Lean formalization is more elaborated, making indentation level explicit by incorporating the
information into a layout. We present a simplified version here for the sake of simplicity. See Section 7 for details.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 261. Publication date: October 2023.

261:12 Sorawee Porncharoenwase, Justin Pombrio, and Emina Torlak

Text
⟨text 𝑠, 𝑐, 𝑖, 𝑓 ⟩ ⇓R [𝑠]

Flatten
⟨𝑑, 𝑐, 𝑖,⊤⟩ ⇓R [𝑠]

⟨flatten 𝑑, 𝑐, 𝑖, 𝑓 ⟩ ⇓R [𝑠]

LineNoFlatten
⟨nl, 𝑐, 𝑖,⊥⟩ ⇓R [𝜖, "␣" × 𝑖]

LineFlatten
⟨nl, 𝑐, 𝑖,⊤⟩ ⇓R ["␣"]

ConcatOne

⟨𝑑𝑎, 𝑐, 𝑖, 𝑓 ⟩ ⇓R [𝑠]
⟨𝑑𝑏 , 𝑐 + |𝑠 |, 𝑖, 𝑓 ⟩ ⇓R [𝑡, 𝑡1, . . . , 𝑡𝑛]

⟨𝑑𝑎 <> 𝑑𝑏 , 𝑐, 𝑖, 𝑓 ⟩ ⇓R [𝑠 ++ 𝑡, 𝑡1, . . . , 𝑡𝑛]
ConcatMult

⟨𝑑𝑎, 𝑐, 𝑖, 𝑓 ⟩ ⇓R [𝑠1, . . .+ , 𝑠𝑛, 𝑠]
⟨𝑑𝑏 , |𝑠 |, 𝑖, 𝑓 ⟩ ⇓R [𝑡, 𝑡1, . . . , 𝑡𝑚]

⟨𝑑𝑎 <> 𝑑𝑏 , 𝑐, 𝑖, 𝑓 ⟩ ⇓R [𝑠1, . . .+ , 𝑠𝑛, 𝑠 ++ 𝑡, 𝑡1, . . . , 𝑡𝑚]

Nest
⟨𝑑, 𝑐, 𝑖 + 𝑛, 𝑓 ⟩ ⇓R [𝑠1, . . .+ , 𝑠𝑚]

⟨nest 𝑛 𝑑, 𝑐, 𝑖, 𝑓 ⟩ ⇓R [𝑠1, . . .+ , 𝑠𝑚]
Align

⟨𝑑, 𝑐, 𝑐, 𝑓 ⟩ ⇓R [𝑠1, . . .+ , 𝑠𝑛]
⟨align 𝑑, 𝑐, 𝑖, 𝑓 ⟩ ⇓R [𝑠1, . . .+ , 𝑠𝑛]

TextWiden
text 𝑠 ⇓W {text 𝑠 }

LineWiden
nl ⇓W {nl}

ConcatWiden
𝑑𝑎 ⇓W 𝐷𝑎 𝑑𝑏 ⇓W 𝐷𝑏

𝑑𝑎 <> 𝑑𝑏 ⇓W {𝑑𝑎 <> 𝑑𝑏 | 𝑑𝑎 ∈ 𝐷𝑎, 𝑑𝑏 ∈ 𝐷𝑏 }

NestWiden
𝑑 ⇓W 𝐷

nest 𝑛 𝑑 ⇓W {nest 𝑛 𝑑 | 𝑑 ∈ 𝐷 }
AlignWiden

𝑑 ⇓W 𝐷

align 𝑑 ⇓W {align 𝑑 | 𝑑 ∈ 𝐷 }

FlattenWiden
𝑑 ⇓W 𝐷

flatten 𝑑 ⇓W {flatten 𝑑 | 𝑑 ∈ 𝐷 }
UnionWiden

𝑑𝑎 ⇓W 𝐷𝛼 𝑑𝑏 ⇓W 𝐷𝛽

𝑑𝑎 <|> 𝑑𝑏 ⇓W 𝐷𝛼 ∪𝐷𝛽

Fig. 8. Semantics for Σ𝑒 . “𝜖” is the empty string. “𝑠 × 𝑖” is the notation for replicating the string 𝑠 for 𝑖 times.

“𝑠 ++ 𝑡” is a string concatenation of 𝑠 and 𝑡 . Lastly, “𝑠1, . . . , 𝑠𝑛” and “𝑠1, . . .+ , 𝑠𝑛” indicate 𝑛 lines, where 𝑛 ≥ 0
and 𝑛 ≥ 1 respectively.

4.2 The Formal Semantics of Σ𝑒
Our approach to evaluate a document in Σ𝑒 to a set of layouts is to first widen a document into a
set of choiceless documents, then render each choiceless document in the set, producing a set of
layouts.

The formal semantics of Σ𝑒 consists of two relations, shown in Figure 8. The judgment ⟨𝑑, 𝑐, 𝑖, 𝑓 ⟩ ⇓R
𝑙 states that the choiceless document 𝑑 ∈ D𝑒 placed at column position 𝑐 ∈ Nwith indentation level
𝑖 ∈ N and flattening mode 𝑓 ∈ B, will render to the layout 𝑙 ∈ L. Unlike the informal semantics in
Section 3.1, we make the flattening mode 𝑓 , which indicates whether newlines should be replaced
with spaces, explicit. Its value can be either on (⊤) or off (⊥). Another judgment 𝑑 ⇓W 𝐷 states
that a document 𝑑 ∈ D𝑒 is widened to a finite, non-empty set of choiceless documents 𝐷 ∈ 2D𝑒 .
We sometimes call a combination of 𝑐 and 𝑖 (and possibly 𝑓) a printing context. Now, we elaborate
some interesting rules in the figure.

Rendering Text. The Text rule states that the rendering of a text placement text 𝑠 contains a
layout with a single line of the text 𝑠 . The printing context is completely ignored.

Rendering Newlines. When the flattening mode is off, the LineNoFlatten rule states that the
rendering of a nl results in a layout with two lines. The first line is empty, while the second line is
indented by 𝑖 spaces. On the other hand, when the flattening mode is on, the LineFlatten rule
states that the rendering of the newline results in a layout with a single line of a single space.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 261. Publication date: October 2023.

A Pretty Expressive Printer (with Appendices) 261:13

Rendering Unaligned Concatenation. In the rendering of 𝑑𝑎 <> 𝑑𝑏 , we recursively render 𝑑𝑎 and
𝑑𝑏 , but the rendering of 𝑑𝑏 is dependent on the rendering of 𝑑𝑎 . Let 𝑙𝑎 be the rendering result of
𝑑𝑎 . The ConcatOne rule handles the case where 𝑙𝑎 has a single line, and the ConcatMult rule
handles the case where 𝑙𝑎 has multiple lines.

• If 𝑙𝑎 has only a single line 𝑠 , the column position of 𝑑𝑏 ’s rendering needs to be after the string
𝑠 is placed, i.e. at 𝑐 + |𝑠 |. In such case, let 𝑙𝑏 be the rendering result of 𝑑𝑏 . The first line of the
resulting layout is the concatenation of 𝑠 and the first line of 𝑙𝑏 . The rest of the lines are from
the rest of 𝑙𝑏 .

• On the other hand, if 𝑙𝑎 has multiple lines, the column position of 𝑑𝑏 ’s rendering is simply
the column position after the last line is placed. In such case, let 𝑙𝑏 be the rendering result of
𝑑𝑏 , the resulting layout contains all but the last line of 𝑙𝑎 , a concatenation of the last line of 𝑙𝑎
and the first line of 𝑙𝑏 , and the rest of 𝑙𝑏 .

Widening Choices. The UnionWiden rule states that the widening of 𝑑𝑎 <|> 𝑑𝑏 is the union of
widen 𝑑𝑎 and widen 𝑑𝑏

Both ⇓R and ⇓W are deterministic and total. Thus, we can define eval𝑒 (𝑑) = {𝑙 : ⟨𝑑, 0, 0,⊥⟩ ⇓R
𝑙, 𝑑 ∈ 𝐷,𝑑 ⇓W 𝐷} as the evaluation function for Σ𝑒 , which consumes a document, widens it, and
produces a set of layouts.

5 A FRAMEWORK TO REASON ABOUT EXPRESSIVENESS
In previous sections, we informally made claims about expressiveness of PPLs. This section presents
a framework to formally reason about it, based on two notions: functional completeness and de-

finability. We first define the semantics of the traditional and arbitrary-choice PPLs. Then, we
define our framework, and show that Σ𝑒 is strictly more expressive than both the traditional and
arbitrary-choice PPLs while being minimal.
In particular, Theorem 5.12 states that every construct in the traditional and arbitrary-choice

PPLs is definable in Σ𝑒 . However, Theorem 5.17 states that some of these constructs are not definable
in the traditional and arbitrary-choice PPLs. Finally, Theorem 5.19 shows that Σ𝑒 is minimal. Proof
sketches of theorems in this section are provided in Appendix B.

5.1 The Extended Semantics
To reason about the traditional and arbitrary-choice PPLs, we need to precisely define their se-
mantics. To do so, we construct a PPL Σall that contains all constructs from Σ𝑒 and the traditional
and arbitrary-choice PPLs by extending Figure 8 with Figure 9 (along with the straightforward
widening rules). Note that we follow Wadler [2003]’s approach by treating group 𝑑 as a syntactic
sugar for 𝑑 <|> flatten 𝑑 . As <|> and flatten are already in Σall, we do not need to adjust anything
further.
The extended semantics are still deterministic and total. The semantics of the traditional and

arbitrary-choice PPLs is then the restricted semantics of Σall that only allows their constructs.9
Throughout this section, we assume that any PPL is similarly a sublanguage of Σall, whose semantics
is well-defined and consistent with Σall.
9It is worth noting that there are many ways to specify rules to be consistent with the intended semantics of the arbitrary-
choice PPL. For instance, an invariant in the the arbitrary-choice PPL is that 𝑐 = 𝑖 throughout the rendering process. As
a result, we could substitute the VertConcatNoFlatten rule with its variant that changes the premise ⟨𝑑𝑏 , 𝑖, 𝑖,⊥⟩ ⇓R
[𝑡1, . . .+ , 𝑡𝑚] to ⟨𝑑𝑏 , 𝑐, 𝑐,⊥⟩ ⇓R [𝑡1, . . .+ , 𝑡𝑚], without affecting the semantics of the arbitrary-choice PPL. However, this
change could affect the semantics of Σ

all
and subsequent theorems in this section. We pick VertConcatNoFlatten over

the variant because it seemingly integrates better with other constructs in Σ
all
.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 261. Publication date: October 2023.

261:14 Sorawee Porncharoenwase, Justin Pombrio, and Emina Torlak

VertConcatNoFlatten
⟨𝑑𝑎, 𝑐, 𝑖,⊥⟩ ⇓R [𝑠1, . . .+ , 𝑠𝑛] ⟨𝑑𝑏 , 𝑖, 𝑖,⊥⟩ ⇓R [𝑡1, . . .+ , 𝑡𝑚]

⟨𝑑𝑎 <$> 𝑑𝑏 , 𝑐, 𝑖,⊥⟩ ⇓R [𝑠1, . . .+ , 𝑠𝑛, 𝑡1, . . .+ , 𝑡𝑚]

VertConcatFlatten
⟨𝑑𝑎, 𝑐, 𝑖,⊤⟩ ⇓R [𝑠] ⟨𝑑𝑏 , 𝑐 + 1 + |𝑠 |, 𝑖,⊤⟩ ⇓R [𝑡]

⟨𝑑𝑎 <$> 𝑑𝑏 , 𝑐, 𝑖,⊤⟩ ⇓R [𝑠 ++"␣" ++ 𝑡]

AlignedConcatOne
⟨𝑑𝑎, 𝑐, 𝑖, 𝑓 ⟩ ⇓R [𝑠] ⟨𝑑𝑏 , 𝑐 + |𝑠 |, 𝑐 + |𝑠 |, 𝑓 ⟩ ⇓R [𝑡, 𝑡1, . . . , 𝑡𝑛]

⟨𝑑𝑎 <+> 𝑑𝑏 , 𝑐, 𝑖, 𝑓 ⟩ ⇓R [𝑠 ++ 𝑡, 𝑡1, . . . , 𝑡𝑛]

AlignedConcatMult
⟨𝑑𝑎, 𝑐, 𝑖, 𝑓 ⟩ ⇓R [𝑠1, . . .+ , 𝑠𝑛, 𝑠] ⟨𝑑𝑏 , |𝑠 |, |𝑠 |, 𝑓 ⟩ ⇓R [𝑡, 𝑡1, . . . , 𝑡𝑚]

⟨𝑑𝑎 <+> 𝑑𝑏 , 𝑐, 𝑖, 𝑓 ⟩ ⇓R [𝑠1, . . .+ , 𝑠𝑛, 𝑠 ++ 𝑡, 𝑡1, . . . , 𝑡𝑚]

Fig. 9. The semantics extension.

5.2 Functional Completeness
In Section 1, we claimed that the traditional PPL cannot express the two layouts in Figure 1b, as
one layout has an extra pair of parentheses. The question that we may want to ask in general then
is, given a PPL Σ and a non-empty set of layouts 𝐿, is it possible to construct a document in Σ that
evaluates to 𝐿? This motivates us to define the notion of functional completeness for PPLs.

Definition 5.1. A PPL Σ with an evaluation function eval(·) is functionally complete if for any
non-empty set of layouts 𝐿, there exists a document 𝑑 in Σ such that eval(𝑑) = 𝐿.

With this definition, we can formally reason about some PPLs that we have previously seen.

Lemma 5.2. The arbitrary-choice PPL and Σ𝑒 are functionally complete.

Lemma 5.3. The traditional PPL is not functionally complete.

Lemma 5.4. For each construct F in {text,<>, nl,<|>}, Σ𝑒 without F is not functionally complete.

If we limit the notion of expressiveness to only functional completeness, then all functionally
complete PPLs would be equally expressive. However, intuitively this is clearly not the case. The
proof of Lemma 5.2 in Appendix B shows that it suffices for a PPL to only have text, <$>, and
<|> for functional completeness, yet such a PPL would not be pleasant to use compared to Σ𝑒 ,
because of the lack of features to, e.g., adjust indentation level. In a sense, functional completeness
for PPLs is similar to Turing completeness for programming languages, which similarly does not
fully capture expressiveness for programming languages. The next subsection presents a more
fine-grained notion of expressiveness, based on the ability to define features.

5.3 Definability
The proof of Lemma 5.2 shows that while Σ𝑒 doesn’t have <$>, we can simply expand 𝑑𝑎 <$> 𝑑𝑏 to
𝑑𝑎 <> nl <> 𝑑𝑏 , which are in Σ𝑒 , to perform the same functionality. In other words, the construct
<$> is already definable by <> and nl. Thus, adding <$> to Σ𝑒 doesn’t increase its expressiveness.
By contrast, <> is not definable by any combination of features in the arbitrary-choice PPL. To
achieve the functionality of <>, it would require a non-local restructuring of the document, making
it difficult to construct the document in natural way. In this sense, the inability to define a construct
in a PPL means that adding the construct to the PPL increases its expressiveness.
More concretely, consider the document in the arbitrary-choice PPL shown in Figure 1b. The

document is awkwardly constructed. The return keyword must be distributed to combine with a
first line of the returned expression, due to the undefinability of unaligned concatenation. This

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 261. Publication date: October 2023.

A Pretty Expressive Printer (with Appendices) 261:15

creates a disconnection between the document structure and the underlying AST structure, making
it more tedious and error-prone to construct documents. By contrast, the following document is a
rewrite of Figure 1b to utilize the full expressiveness of Σ𝑒 in a natural way. The sub-document
colored blue fully corresponds to the “returned expression,” allowing users to recursively construct
documents naturally.

text "function␣append(first,second,third){" <> nest 4 (|
let f = text "first␣+" in let s = text "second␣+" in let t = text "third" in|
nl <> text "return␣" <>|
((text "(" <> (nest 4 (nl <> (f <> nl <> s <> nl <> t))) <> nl <> text ")") <|>|

let sp = text "␣" in (f <> sp <> s <> sp <> t))|
) <> nl <> text "}"|

The notion of definability (also known as expressibility) for programming languages was first
developed by Felleisen [1991], and we adapt it for PPLs through a series of definitions as follows:

Definition 5.5. A PPL Σ consists of:
• a set of (possibly infinitely many) function symbols Σ = {F, . . .}. The function symbols are
referred to as constructs. Each may have different arity, argument sorts, and resulting sort.

• a non-empty set of documents D generated from Σ, where a document is a term of sort Doc.
• an evaluation function eval : D → 2L .

Example 5.6. Σ𝑒 contains nest, which is a construct with arity 2 of resulting sort Doc. The first
argument to nest has sort N and the second argument has sort Doc. Σ𝑒 also contains all natural
numbers and strings with no newline, which are constructs with arity 0 of resulting sort N and Str
respectively. The evaluation function for Σ𝑒 is eval𝑒 from Section 4.2.

Henceforth, unless indicated otherwise,D𝑋 and eval𝑋 are the set of documents and the evaluation
function for the PPL Σ𝑋 .

Definition 5.7. A syntactic abstraction M(𝛼1, . . . , 𝛼𝑛) of arity 𝑛 for a PPL Σ is a document in
Σ ∪ {𝛼1, . . . , 𝛼𝑛} where 𝛼1, . . . , 𝛼𝑛 are metavariables of some sorts. An instance M(𝑒1, . . . , 𝑒𝑛) is a
document in Σ that substitutes 𝛼𝑖 with 𝑒𝑖 inM(𝛼1, . . . , 𝛼𝑛) for all 1 ≤ 𝑖 ≤ 𝑛, where 𝑒𝑖 and 𝛼𝑖 must
have a compatible sort.

Example 5.8. M(𝛼1, 𝛼2) = 𝛼1 <> nl <> 𝛼2 is a syntactic abstraction for Σ𝑒 , where 𝛼1 and 𝛼2 have
sort Doc. On the other hand, M′ (𝛼1) = nest 𝛼1 nl <> 𝛼1 is not a syntactic abstraction because
the first occurrence of 𝛼1 requires it to have sort N, but the second occurrence requires it to have
sort Doc. An instance M(text "a", text "b") is the document text "a" <> nl <> text "b", but
M(text "a", 1) is not an instance due to the incompatible sort.

Definition 5.9. Let Σbase be a PPL and Σextended = Σbase ∪ {F} where F has arity 𝑛 with resulting
sort Doc. A syntactic expansion expand

M
F (𝑑) from Σextended to Σbase is a function from Dextended to

Dbase that replaces every occurrence of F(𝑒1, . . . , 𝑒𝑛) with an instanceM(𝑒1, . . . , 𝑒𝑛) in 𝑑 , where F
and M must have compatible arity and sort arguments.

Example 5.10. expand
M
<$> (·) is a syntactic expansion from Σ𝑒 ∪ { <$>} to Σ𝑒 , where M is from

Example 5.8. Hence, expandM<$> (text "a" <$> text "b") = text "a" <> nl <> text "b".

We are now ready to define definability.10

10One important distinction of this definition and Felleisen’s counterpart is that PPLs are total. Hence, observing termination
behavior, as done in Felleisen’s work, is not feasible in our formulation.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 261. Publication date: October 2023.

261:16 Sorawee Porncharoenwase, Justin Pombrio, and Emina Torlak

Definition 5.11. Let Σbase be a PPL and Σextended = Σbase ∪ {F}. We say that F is definable by Σbase

if there exists a syntactic abstractionM from Σextended to Σbase such that for every document 𝑑 ∈
Dextended, evalextended (𝑑) = evalbase (expandMF (𝑑)).

We can now present one of our main results:

Theorem 5.12. Every construct in the traditional and arbitrary-choice PPLs is definable in Σ𝑒 .

Despite the result, one might wonder if Σ𝑒 is actually needed. Could it be that the arbitrary-choice
PPL can already define every construct in the traditional PPL? As we foreshadowed, the answer to
this question is negative. However, we must first develop tools that allow us to answer the question,
again following the development in Felleisen’s work.

Definition 5.13. A context𝐶 (𝛼) for Σ is a unary syntactic abstraction for Σ where 𝛼 has sort Doc.

Definition 5.14. Given a PPL Σ and a relation 𝑅 ⊆ 2L × 2L , the relation 𝐸Σ
𝑅
(𝑑1, 𝑑2) holds if and

only if 𝑅(eval(𝐶 (𝑑1)), eval(𝐶 (𝑑2))) holds for all contexts 𝐶 in Σ.11

Example 5.15. Let maxWidth : L → N be a function that computes the maximum length across
all lines in the input layout, and liftmaxWidth to work on any set of layouts. That is,maxWidth(𝐿) =
{maxWidth(𝑙) : 𝑙 ∈ 𝐿}. Furthermore, let 𝑅 = {(𝐿1, 𝐿2) : maxWidth(𝐿1) = maxWidth(𝐿2)}.

• 𝐸
Σ𝑒
𝑅
(text "a", text "b") holds by induction. Intuitively, this is because (1) if we only observe

the width, the textual content doesn’t matter, and (2) there is no construct in Σ𝑒 that allows
us to lay out differently in a way that would affect the width based on the textual content.

• On the other hand, ¬𝐸Σ𝑒
𝑅
(text "a", text "aa"). For example, with 𝐶 (𝛼) = 𝛼 , we have that

maxWidth(eval𝑒 (𝐶 (text "a"))) = {1}, but maxWidth(eval𝑒 (𝐶 (text "aa"))) = {2}.

The following theorem provides a tool to prove that a construct is not definable in a PPL.

Theorem 5.16. Given a PPL Σ and a construct F, if there exists two documents 𝑑1 and 𝑑2 in Σ and a

relation 𝑅 such that 𝐸Σ
𝑅
(𝑑1, 𝑑2), but ¬𝐸Σ∪{F}

𝑅
(𝑑1, 𝑑2), then F is not definable in Σ.

With this tool, we are able to prove that some constructs of Σall are not definable in the traditional
and arbitrary-choice PPLs:

Theorem 5.17. The following is true:
• <> is not definable in the arbitrary-choice PPL.

• nest is not definable in the arbitrary-choice PPL.

• group is not definable in the arbitrary-choice PPL.

• <+> is not definable in the traditional PPL.

Next, we show a relationship between functional completeness and definability.

Lemma 5.18. If Σ is not functionally complete, but Σ ∪ {C} is, then C is not definable in Σ.

Lastly, we present our final result for this section: Σ𝑒 is minimal in the sense that each of its
constructs is not definable by Σ𝑒 without it.

Theorem 5.19. For any construct F of Σ𝑒 , F is not definable in Σ𝑒 \ {F}.

11The relation 𝐸Σ
𝑅
is a generalization of the operational equivalence relation in Felleisen’s work.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 261. Publication date: October 2023.

A Pretty Expressive Printer (with Appendices) 261:17

<|>

𝒲
resolve pick optimal render ABC

DE
FGHI
J

Πeinput document

cost factory

computation
width limit

resolved measure set
optimal measure /
optimal choiceless document

printed,
optimal
layout

Fig. 10. Architecture diagram of our pretty printer, Π𝑒

<|>

cost

 ABC
DE
FGHI
J

 ABC
DE
FGHI
J

 ABC
DE
FGHI
J

 ABC
DE
FGHI
J

 ABC
DE
FGHI
J

 ABC
DE
FGHI
J

measure /
choiceless document

renders to

 ABC
DE
FGHI
J

evaluated layout printed, optimal
layout

input document

optimal measure /
optimal choiceless document

resolved measure set

widens to

last

<|>

 ABC
DE
FGHI
J

Fig. 11. Relationship between evaluation and printing

6 OUR PRINTER, Π𝑒

In this section, we describe our printer, Π𝑒 , which targets the PPL Σ𝑒 presented in Section 4. Π𝑒 is
parameterized by a cost factory and a computation width limitW. We start with an overview of
Π𝑒 . Then, we define a measure, which is an output from the core printer that allows us to record
a cost and at the same time avoid a full-blown, expensive rendering. After that, we describe the
requirements of the input document structure, which will become important when we analyze the
time complexity of the printer. Then, we present Π𝑒 ’s printing algorithm, which utilizes the cost
factory to achieve optimal and efficient printing. Finally, we analyze the time complexity of Π𝑒 .

6.1 Overview
So far we have defined the evaluation of a document, which produces the set of possible layouts.
But when we print a document, we wish to output only a single, optimal layout.
A naïve approach would be to evaluate the input document, via widening and rendering, to all

possible layouts, determine costs of these layouts according to a given optimality objective, and
then pick one with the least cost as the optimal layout. However, this approach is not practical
for two reasons. First, widening could produce exponentially many choiceless documents. Second,
rendering non-optimal choiceless documents is unnecessary and wasteful.
A better approach would utilize early pruning to reduce the search space, and avoid rendering

until an optimal choiceless document is first identified. The need to prune early motivated the
design of the cost factory interface shown in Figure 6, which allows Π𝑒 to incrementally compute

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 261. Publication date: October 2023.

261:18 Sorawee Porncharoenwase, Justin Pombrio, and Emina Torlak

Measure𝑚 ∈ M = ⟨𝑙, C, 𝑑, 𝑥, 𝑦⟩M

last : M → N last(⟨𝑙, C, 𝑑, 𝑥, 𝑦⟩M) = 𝑙 cost : M → 𝜏 cost(⟨𝑙, C, 𝑑, 𝑥, 𝑦⟩M) = 𝑐

doc : M → D𝑒 doc(⟨𝑙, C, 𝑑, 𝑥, 𝑦⟩M) = 𝑑

maxx : M → N maxx(⟨𝑙, C, 𝑑, 𝑥, 𝑦⟩M) = 𝑥 maxy : M → N maxy(⟨𝑙, C, 𝑑, 𝑥, 𝑦⟩M) = 𝑦

◦ : M → M → M ⟨𝑙𝑎, C𝑎, 𝑑𝑎, 𝑥𝑎, 𝑦𝑎 ⟩M ◦ ⟨𝑙𝑏 , C𝑏 , 𝑑𝑏 , 𝑥𝑏 , 𝑦𝑏 ⟩M =

⟨𝑙𝑏 , C𝑎 +F C𝑏 , 𝑑𝑎 <> 𝑑𝑏 ,max(𝑥𝑎, 𝑥𝑏),max(𝑦𝑎, 𝑦𝑏) ⟩M

adjustNest : N→ M → M adjustNest(𝑛, ⟨𝑙, C, 𝑑, 𝑥, 𝑦⟩M) = ⟨𝑙, C, nest 𝑛 𝑑, 𝑥, 𝑦⟩M
adjustAlign : N→ M → M adjustAlign(𝑖, ⟨𝑙, C, 𝑑, 𝑥, 𝑦⟩M) = ⟨𝑙, C, align 𝑑, 𝑥,max(𝑦, 𝑖) ⟩M

⪯ : M → M → B ⟨𝑙𝑎, C𝑎, 𝑑𝑎, 𝑥, 𝑦⟩M ⪯ ⟨𝑙𝑏 , C𝑏 , 𝑑𝑏 , 𝑥, 𝑦⟩M = 𝑙𝑎 ≤ 𝑙𝑏 ∧ C𝑎 ≤F C𝑏

Fig. 12. Measure and operations on measures

TextM
⟨text 𝑠, 𝑐, 𝑖 ⟩ ⇓M ⟨𝑐 + |𝑠 |, textF (𝑐, |𝑠 |), text 𝑠, 𝑐 + |𝑠 |, 𝑖 ⟩M

LineM
⟨nl, 𝑐, 𝑖 ⟩ ⇓M ⟨𝑖, nlF +F textF (0, 𝑖), nl,max(𝑐, 𝑖), 𝑖 ⟩M

ConcatM
⟨𝑑𝑎, 𝑐, 𝑖 ⟩ ⇓M 𝑚𝑎 ⟨𝑑𝑏 , last(𝑚𝑎), 𝑖 ⟩ ⇓M 𝑚𝑏

⟨𝑑𝑎 <> 𝑑𝑏 , 𝑐, 𝑖 ⟩ ⇓M 𝑚𝑎 ◦𝑚𝑏

NestM
⟨𝑑, 𝑐, 𝑖 + 𝑛⟩ ⇓M 𝑚

⟨nest 𝑛 𝑑, 𝑐, 𝑖 ⟩ ⇓M adjustNest(𝑛,𝑚)
AlignM

⟨𝑑, 𝑐, 𝑐 ⟩ ⇓M 𝑚

⟨align 𝑑, 𝑐, 𝑖 ⟩ ⇓M adjustAlign(𝑖,𝑚)

Fig. 13. Measure computation from a choiceless document in a printing context

costs to be used for pruning decisions. Since we wish to avoid full-blown rendering, we will instead
operate on measures [Bernardy 2017c], which record the information about a choiceless document
required for pruning without expensive rendering.

The workflow of Π𝑒 is shown in Figure 10, while Figure 11 shows how it relates to the evaluation
of a document. The printer first resolves choices, with early pruning, to produce a small set of
measures that contain the optimal measure. The set in particular forms a Pareto frontier in the cost
and last line length trade-off (Section 6.2 and Section 6.3). We then pick the optimal measure from
the set and render its choiceless document to produce an optimal layout.
In the rest of this section, every definition and theorem is implicitly parameterized by a cost

factory F and a computation width limit W.

6.2 Measure
As presented earlier, the resolving phase computes measures. Presented in Figure 12, a measure
consists of five components: length of last line (𝑙), cost (C), choiceless document (𝑑), max column
position (𝑥), and max indentation (𝑦). We gray out the last two components because they are
ghosted [Owicki and Gries 1976]: they are only needed for the correctness theorem, and not
required in the actual implementation.

Example 6.1. Let𝑑 be the choiceless document in Example 3.1.With the cost factory in Example 3.4
and𝑤 = 6, the choiceless document is rendered at the column position 3 and indentation level 0 to
the second layout in Figure 7, with the cost (8, 3). The column position of the last line is 1. The
maximum column position attained is 10 (on the first line), and the maximum indentation level
attained is 2. Thus, the computed measure is ⟨1, (8, 3), 𝑑, 10, 2⟩M .

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 261. Publication date: October 2023.

A Pretty Expressive Printer (with Appendices) 261:19

Figure 13 shows rules that define measure computation. The judgment ⟨𝑑, 𝑐, 𝑖⟩ ⇓M 𝑚 states that
when we compute the measure of 𝑑 ∈ D𝑒 placed at the column position 𝑐 ∈ N with indentation
level 𝑖 ∈ N, the resulting measure is𝑚 ∈ M. To simplify the core printer, we (temporarily) remove
flatten from Σ𝑒 . This allows us to eliminate the flattening mode parameter, which implicitly
defaults to ⊥. Toward the end of this section, we will show how to add support for flatten back.
The rules are largely standard. They reflect the actual rendering defined by ⇓R , and utilize the

cost factory in a straightforward way. The rules use a helper operator function ◦ to concatenate
two measures, and helper functions adjustNest and adjustAlign to construct a correct measure
for nest and align. These functions are defined in Figure 12. Notably, the LineM rule creates
a measure whose maxc is max(𝑐, 𝑖) because before placing the newline, the column position is
𝑐 , and after placing the newline, the column position is 𝑖 . The AlignM rule creates a measure
whose maxi is max(𝑦, 𝑖) where 𝑦 is obtained via the recursive computation. This is because the
recursive computation discards the current indentation level, so we need to specifically record the
information.

⇓M is deterministic and total. It is also correct with respect to ⇓R .

Theorem 6.2. For any 𝑑 ∈ D𝑒 and 𝑐, 𝑖 ∈ N, there exists a maximum indentation 𝑦 such that

• if ⟨𝑑, 𝑐, 𝑖,⊥⟩ ⇓R [𝑠], then ⟨𝑑, 𝑐, 𝑖⟩ ⇓M ⟨𝑐 + |𝑠 |,Cost(𝑐, [𝑠]), 𝑑, 𝑐 + |𝑠 |, 𝑦⟩M .

• if ⟨𝑑, 𝑐, 𝑖,⊥⟩ ⇓R [𝑠, 𝑠1, . . . , 𝑠𝑛, 𝑡], then
⟨𝑑, 𝑐, 𝑖⟩ ⇓M ⟨|𝑡 |,Cost(𝑐, [𝑠, 𝑠1, . . . , 𝑠𝑛, 𝑡]), 𝑑,max(𝑐 + |𝑠 |, |𝑠1 |, . . . , |𝑠𝑛 |, |𝑡 |), 𝑦⟩M

So far, we have only considered the measure computation for a choiceless document. When we
take the choice operator into account, there could be multiple measures under the same printing
context. The main operation that we can perform on these measures is finding domination ⪯, also
presented in Figure 12.𝑚𝑎 ⪯ 𝑚𝑏 when both the cost and the last length of𝑚𝑎 are no worse than
those of𝑚𝑏 . The fact that𝑚𝑎 ⪯ 𝑚𝑏 is useful because it allows us to prune𝑚𝑏 away immediately.

6.3 Measure Set
Resolving a document (in a printing context) produces a small set of measures. To accommodate
taintedness mentioned in Section 3.3, Figure 14 defines a measure set to be either a non-empty
Set of untainted measures where no measure dominates the other, or a Tainted singleton set of
a promise �̂� that can be forced to a measure. The Set, by definition, forms a Pareto frontier. To
aid computation, we represent the Set with a list ordered by the cost in strict ascending order
(and therefore the last length in strict descending order). We are able to do so because in a Pareto
frontier, all last and cost values must be distinct.

The main operation that we can perform on measure sets is merging two measure sets (⊎), shown
in Figure 14, where we prefer a Set over a Tainted. The merge operation maintains the Pareto
frontier invariant, by doing the merge in the style of the merge operation in merge sort, although
the Pareto frontier merging can also prune measures away during the operation. One important
“quirk” of this merge operation is that it is left-biased in the presence of taintedness. If two tainted
measure sets are merged, the result is always the left one. This means the order of arguments to
the merge operation is important, as we will see in the next subsections.

Other operations on measure sets which are used in subsequent sections are taint, lift, and dedup.
taint taints a measure set. When tainting a Set, we choose to pick the first measure from the Set
because it has the least cost, which is a greedy heuristic. lift adjusts measures in a measure set.
Lastly, dedup prunes measures that are sorted by last in strictly decreasing order and by cost in
non-strictly increasing order, so that the result conforms to the Pareto frontier invariant.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 261. Publication date: October 2023.

261:20 Sorawee Porncharoenwase, Justin Pombrio, and Emina Torlak

Measure set 𝑆 ∈ S F Tainted(�̂�) where �̂� is a promise that can be forced to a measure
| Set([𝑚1, . . .

+ ,𝑚𝑛]) where last(𝑚1) > . . . > last(𝑚𝑛) and ∀𝑖 ≠ 𝑗,¬(𝑚𝑖 ⪯ 𝑚 𝑗 ∨𝑚 𝑗 ⪯ 𝑚𝑖)

taint : S → S taint(Tainted(𝑚)) = Tainted(𝑚)
taint(Set([𝑚0,𝑚1, . . . ,𝑚𝑛])) = Tainted(𝑚0)

lift : S→ (M→M)→S lift(Tainted(𝑚), 𝑓) = Tainted(𝑓 (𝑚))
lift(Set([𝑚1, . . .

+ ,𝑚𝑛]), 𝑓) = Set([𝑓 (𝑚1), . . .+ , 𝑓 (𝑚𝑛)])

dedup :
−→
M →

−→
M dedup([𝑚,𝑚′,𝑚1, . . . ,𝑚𝑛]) = dedup([𝑚′,𝑚1, . . . ,𝑚𝑛]) if𝑚′ ⪯ 𝑚

dedup([𝑚,𝑚′,𝑚1, . . . ,𝑚𝑛]) = [𝑚]@dedup([𝑚′,𝑚1, . . . ,𝑚𝑛]) if𝑚′ ⪯̸𝑚

dedup([𝑚]) = [𝑚]

⊎ : S → S → S 𝑆 ⊎ Tainted(𝑚) = 𝑆

Tainted(𝑚) ⊎ Set([𝑚1, . . .
+ ,𝑚𝑛]) = Set([𝑚1, . . .

+ ,𝑚𝑛])
Set([𝑚1, . . .

+ ,𝑚𝑛])⊎Set([𝑚′
1, . . .

+ ,𝑚′
𝑛′]) = Set([𝑚1, . . .

+ ,𝑚𝑛]⊎[𝑚′
1, . . .

+ ,𝑚′
𝑛′])

⊎ :
−→
M →

−→
M →

−→
M [] ⊎ [𝑚1, . . .

+ ,𝑚𝑛] = [𝑚1, . . .
+ ,𝑚𝑛]

[𝑚1, . . .
+ ,𝑚𝑛] ⊎ [] = [𝑚1, . . .

+ ,𝑚𝑛]

[𝑚0,𝑚1, . . . ,𝑚𝑛] ⊎ [𝑚′
0,𝑚

′
1, . . . ,𝑚

′
𝑛′] =

[𝑚0,𝑚1, . . . ,𝑚𝑛] ⊎ [𝑚′

1, . . . ,𝑚
′
𝑛′] if𝑚0 ⪯ 𝑚′

0
[𝑚1, . . . ,𝑚𝑛] ⊎ [𝑚′

0,𝑚
′
1, . . . ,𝑚

′
𝑛′] if𝑚′

0 ⪯ 𝑚0

[𝑚0]@([𝑚1, . . . ,𝑚𝑛] ⊎ [𝑚′
0,𝑚

′
1, . . . ,𝑚

′
𝑛′]) if last(𝑚0) > last(𝑚′

0)
[𝑚′

0]@([𝑚0,𝑚1, . . . ,𝑚𝑛] ⊎ [𝑚′
1, . . . ,𝑚

′
𝑛′]) otherwise

Fig. 14. Measure set and the merge operation on measure sets.@ denotes a list concatenation. We treat a

promise �̂� and a measure𝑚 interchangeably, as they can be straightforwardly casted to each other.

6.4 The Document Structure
Section 2.2 showed that we need to handle document sharing by treating the input document as a
DAG. However, documents cannot be arbitrarily shared, as the following example shows:

Example 6.3. The following document mk(𝑛) has a DAG size of 𝑂 (𝑛). However, resolving it
necessitates 𝑂 (2𝑛) units of computation, as the printing contexts are all different. This is bad news
because it means that resolving could take time exponential in the input size.
let rec mk (n : int): doc =

if n = 0 then text "x"
else let shared = mk (n - 1) in shared <> shared

However, we argue that the above document is not properly shared, because the sub-documents
are not shared across choices, which is how sharing is employed in practice. The corresponding
properly shared document would have 𝑂 (2𝑛) DAG size, so 𝑂 (2𝑛) units of computation are still
linear in the input size. To make this precise, we provide the following definitions:

Definition 6.4. Given a document 𝑑 ∈ D𝑒 , 𝐺 (𝑑) is a DAG rooted at 𝑑 whose edge in the graph
connects a document to its direct subdocuments.

Definition 6.5. A document 𝑑 ∈ D𝑒 is properly shared if for any two vertices 𝑑𝑎 and 𝑑𝑏 in𝐺 (𝑑), if
𝑝1 and 𝑝2 are two distinct paths from 𝑑𝑎 to 𝑑𝑏 , then there exists a common document 𝑑 ′ such that
(1) 𝑑 ′ is a <|>; (2) 𝑑 ′ occurs in both 𝑝1 and 𝑝2; and (3) 𝑑 ′ is not 𝑑𝑏 .

Figure 3c shows a properly shared document (assuming that 𝐷 is properly shared). It illustrates
two paths where𝑑𝑎 is the root node,𝑑𝑏 is𝐷 , and𝑑 ′ is𝑑𝑎 . In practice, non-properly shared documents
can still be processed by Π𝑒 , and in fact can even make resolving faster when a shared document is
resolved under the same printing context. However, this shared document would be effectively

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 261. Publication date: October 2023.

A Pretty Expressive Printer (with Appendices) 261:21

TextRSSet
𝑐 + |𝑠 | ≤ W 𝑖 ≤ W ⟨text 𝑠, 𝑐, 𝑖 ⟩ ⇓M 𝑚

⟨text 𝑠, 𝑐, 𝑖 ⟩ ⇓RS Set([𝑚])
LineRSSet

𝑐 ≤ W 𝑖 ≤ W ⟨nl, 𝑐, 𝑖 ⟩ ⇓M 𝑚

⟨nl, 𝑐, 𝑖 ⟩ ⇓RS Set([𝑚])

TextRSTnt
𝑐 + |𝑠 | > W ∨ 𝑖 > W ⟨text 𝑠, 𝑐, 𝑖 ⟩ ⇓M 𝑚

⟨text 𝑠, 𝑐, 𝑖 ⟩ ⇓RS Tainted(𝑚)
LineRSTnt

𝑐 > W ∨ 𝑖 > W ⟨nl, 𝑐, 𝑖 ⟩ ⇓M 𝑚

⟨nl, 𝑐, 𝑖 ⟩ ⇓RS Tainted(𝑚)

NestRS
⟨𝑑, 𝑐, 𝑖 + 𝑛⟩ ⇓RS 𝑆

⟨nest 𝑛 𝑑, 𝑐, 𝑖 ⟩ ⇓RS lift(𝑆, adjustNest(𝑛))
AlignRS

𝑖 ≤ W ⟨𝑑, 𝑐, 𝑐 ⟩ ⇓RS 𝑆
⟨align 𝑑, 𝑐, 𝑖 ⟩ ⇓RS lift(𝑆, adjustAlign(𝑖))

UnionRS
⟨𝑑𝑎, 𝑐, 𝑖 ⟩ ⇓RS 𝑆𝑎 ⟨𝑑𝑏 , 𝑐, 𝑖 ⟩ ⇓RS 𝑆𝑏

⟨𝑑𝑎 <|> 𝑑𝑏 , 𝑐, 𝑖 ⟩ ⇓RS 𝑆𝑎 ⊎ 𝑆𝑏
AlignRSTnt

𝑖 > W ⟨𝑑, 𝑐, 𝑐 ⟩ ⇓RS 𝑆
⟨align 𝑑, 𝑐, 𝑖 ⟩ ⇓RS lift(taint(𝑆), adjustAlign(𝑖))

ConcatRS
⟨𝑑𝑎, 𝑐, 𝑖 ⟩ ⇓RS Set([𝑚1, . . . ,𝑚𝑛]) ⟨𝑚1, 𝑑𝑏 , 𝑖 ⟩ ⇓RSC 𝑆1 . . . ⟨𝑚𝑛, 𝑑𝑏 , 𝑖 ⟩ ⇓RSC 𝑆𝑛

⟨𝑑𝑎 <> 𝑑𝑏 , 𝑐, 𝑖 ⟩ ⇓RS 𝑆1 ⊎ . . . ⊎ 𝑆𝑛

ConcatRSTnt
⟨𝑑𝑎, 𝑐, 𝑖 ⟩ ⇓RS Tainted(𝑚𝑎) ⟨𝑑𝑏 , last(𝑚𝑎), 𝑖 ⟩ ⇓RS 𝑆 taint(𝑆) = Tainted(𝑚𝑏)

⟨𝑑𝑎 <> 𝑑𝑏 , 𝑐, 𝑖 ⟩ ⇓RS Tainted(𝑚𝑎 ◦𝑚𝑏)

RSCSet
⟨𝑑𝑏 , last(𝑚𝑎), 𝑖 ⟩ ⇓RS Set([𝑚1, . . .

+ ,𝑚𝑛])
⟨𝑚𝑎, 𝑑𝑏 , 𝑖 ⟩ ⇓RSC Set(dedup([𝑚𝑎 ◦𝑚1, . . .

+ ,𝑚𝑎 ◦𝑚𝑛]))
RSCTnt

⟨𝑑𝑏 , last(𝑚𝑎), 𝑖 ⟩ ⇓RS Tainted(𝑚𝑏)
⟨𝑚𝑎, 𝑑𝑏 , 𝑖 ⟩ ⇓RSC Tainted(𝑚𝑎 ◦𝑚𝑏)

Fig. 15. The resolver

duplicated when it is resolved in different contexts. For simplicity, we only consider properly shared
documents as the input to Π𝑒 in this paper.

6.5 The Resolver
We now formally define the core of Π𝑒 , which is the resolver. It is described in Figure 15, which is a
fusion of widening in Figure 8 and measure computation in Figure 13, with early pruning inherent
in the merge operation and extra bookkeeping for taintedness. The judgment ⟨𝑑, 𝑐, 𝑖⟩ ⇓RS 𝑆 states
that a properly shared document 𝑑 ∈ D𝑒 at a column position 𝑐 ∈ N with an indentation level
𝑖 ∈ N resolves to a measure set 𝑆 .

Resolving Text. If placing the text would exceedW or the indentation level is beyondW, the
TextRSTnt rule returns a Tainted. Otherwise, the TextRS rule returns a singleton Set.

Resolving Newlines. Resolving a nl is similar to resolving a text, but we only need to consider
the current column position and indentation level, as resolving the newline does not change the
column position. The LineRSTnt and LineRS rules cover these two cases.

Resolving Nesting. Resolving a nest is handled by the NestRS rule, which recursively resolves its
sub-document with the indentation level changed. The recursive resolving determines whether
the measure set will be a Set or Tainted. In all cases, the result is adjusted to construct correct
choiceless documents.

Resolving Alignment. Resolving an align is similar to resolving nest. However, because the
recursive resolving discards the current indentation level, which could exceedW, we need to taint
the measure set when the indentation level is beyond W. The AlignRSTnt rule handles such
cases, and the AlignRS rule handles the other possibilities.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 261. Publication date: October 2023.

261:22 Sorawee Porncharoenwase, Justin Pombrio, and Emina Torlak

Resolving Choices. TheUnionRS rule recursively resolves its two sub-documents and then merges
the resultingmeasure sets. As mentioned in Section 6.3, the merge operation is left-biased. Therefore,
the left sub-document will be preferred over the right sub-document if exceedingW is unavoidable.
It is possible to employ a heuristic to remove this bias, as discussed in Appendix C.

Resolving Unaligned Concatenation. Resolving a <> is done through the ConcatRSTnt and
ConcatRS rules, which handle the two possibilities of measure set types obtained from the left sub-
document’s recursive resolving. Notably, the ConcatRS rule employs ⇓RSC to help us concatenate
a left measure from the left measure set with a right measure set.

⇓RS is deterministic and total. This allows us to define the top-level printer as Π𝑒 (𝑑) = 𝑙 where
⟨𝑑, 0, 0⟩ ⇓RS [𝑚0,𝑚1, . . . ,𝑚𝑛] and ⟨doc(𝑚0), 0, 0,⊥⟩ ⇓R 𝑙 , which consumes a properly shared
document 𝑑 , resolves it to a set of measures, picks the measure with the least cost, and renders the
associated choiceless document to produce a layout. (Our implementation further fuses resolving
and rendering together, as described in Appendix C.)
While the rules above are enough for correctness, implementing these rules requires further

consideration. As we will see in Lemma 6.9, any resolving beyond W would eventually result
in a tainted measure set. Hence, Π𝑒 should immediately delay the computation for any resolving
beyond W. Π𝑒 should also memoize the computation, so that on identical documents and printing
contexts within W, the result of the previous computation is reused.
We claim that Π𝑒 (𝑑) consumes a properly shared document 𝑑 in Σ𝑒 and produces an optimal

layout among eval𝑒 (𝑑) within W. We prove this claim in the next subsection.

6.6 Correctness of Π𝑒

⇓RS is correct with respect to ⇓M. Two theorems govern the correctness. The first theorem states
that the core printer returns a measure set that contains a measure that is no worse than any
measure within the computation width limit from all possible measures.

Theorem 6.6 (Optimality). For any 𝑑 ∈ D𝑒 , 𝑐 ∈ N, 𝑖 ∈ N, if the following conditions hold

• ⟨𝑑, 𝑐, 𝑖⟩ ⇓RS 𝑆
• 𝑑 ⇓W 𝐷

• 𝑑 ∈ 𝐷

• ⟨𝑑, 𝑐, 𝑖⟩ ⇓M 𝑚

• maxx(𝑚) ≤ W
• maxy(𝑚) ≤ W

then 𝑆 = Set([𝑚1, . . .
+ ,𝑚𝑛]). Furthermore, there exists 𝑖 such that𝑚𝑖 ⪯ 𝑚.

The second theorem states that measures in the resulting measure set are valid.

Theorem 6.7 (Validity). For any 𝑑 ∈ D𝑒 , 𝑐 ∈ N, 𝑖 ∈ N with 𝑑 ⇓W 𝐷 , if ⟨𝑑, 𝑐, 𝑖⟩ ⇓RS
Set([𝑚1, . . .

+ ,𝑚𝑛]), then for each 𝑖 , there exists 𝑑 such that 𝑑 ∈ 𝐷 and ⟨𝑑, 𝑐, 𝑖⟩ ⇓M 𝑚𝑖 . Likewise, if

⟨𝑑, 𝑐, 𝑖⟩ ⇓RS Tainted(𝑚0), then there exists 𝑑 such that 𝑑 ∈ 𝐷 and ⟨𝑑, 𝑐, 𝑖⟩ ⇓M 𝑚0.

The correctness of Π𝑒 follows immediately.
While the above theorems guarantee the correctness of the result that the printer produces, they

do not guarantee efficiency. The following lemmas provide some properties of the printer that
allow us to reason about its efficiency.

Lemma 6.8. For any 𝑑 ∈ D𝑒 , 𝑐 ≤ W, 𝑖 ≤ W, if ⟨𝑑, 𝑐, 𝑖⟩ ⇓RS Set([𝑚1, . . . ,𝑚𝑛]), then 𝑛 ≤ W + 1.

Lemma 6.9. For any 𝑑 ∈ D𝑒 , if 𝑐 > W or 𝑖 > W and ⟨𝑑, 𝑐, 𝑖⟩ ⇓RS 𝑆 , then 𝑆 is a Tainted.

We now informally prove the efficiency of Π𝑒 that we claimed in Section 1. The proof sketches
are provided in Appendix B.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 261. Publication date: October 2023.

A Pretty Expressive Printer (with Appendices) 261:23

Theorem 6.10. The time complexity of Π𝑒 is 𝑂 (𝑛W4) where 𝑛 is the DAG size of the document.

Theorem 6.11. If a document 𝑑 is in the arbitrary-choice PPL, Π𝑒 can print 𝑑 in 𝑂 (𝑛W3).

6.7 Handling Flattening
To support flatten, we make it a function that walks its sub-document and replaces all nl with
text "␣". The walk is memoized and preserves the original identity of the document whenever
possible (i.e. if nothing is flattened in sub-documents, then the document itself is returned unchanged
without creating a new document). Thus, each document can be flattened at most once. This
flattening creates at most 𝑂 (𝑛) new documents without destroying the shared structure in the
original document. We therefore achieve the functionality of flatten without affecting the time
complexity of the printer.

7 IMPLEMENTATION
We implement Π𝑒 in OCaml and Racket. The printer, which we call PrettyExpressive, is further
refined to be more efficient and practical. PrettyExpressive also includes more practical constructs
that do not fit well to the formalism in this paper. We describe these refinements and additional
constructs in Appendix C. The OCaml PrettyExpressive, as a reference implementation, is used
for comparing against other printers in Section 8. The Racket PrettyExpressive has more features,
and it has been used to implement a code formatter for the Racket programming language.
In these implementations, we extend the cost factory interface in Figure 6 so that nlF is now a

procedure that takes an indentation level 𝑖 as an input, and returns the cost of a newline along with
𝑖 indentation spaces, with a contract that ∀𝑖, 𝑖′ ∈ N. 𝑖 ≤ 𝑖′ → nlF (𝑖) ≤F nlF (𝑖′). That is, nlF (𝑖) =
nlF +F textF (0, 𝑖) was not customizable before, but it is now customizable.12 PrettyExpressive
then provides a pre-defined cost factory that is like Example 3.5, but with nlF (𝑖) = (0, 1).

8 EVALUATION
This section evaluates the performance and optimality of PrettyExpressive. The evaluation
consists of two parts. First, we compare PrettyExpressive against Wadler/Leijen [2000] and
Bernardy [2017b]’s printers, which are popular practical printers with capabilities from the tra-
ditional and arbitrary-choice PPLs. Second, we evaluate the Racket code formatter, which uses
PrettyExpressive as its foundation. The evaluation aims to answer the following questions:
(1) Does PrettyExpressive run fast in practice?
(2) Does PrettyExpressive produce pretty layouts in practice?

All experiments are performed on an Apple M2 MacBook Pro with 16GB of RAM. We describe the
experiments and benchmarks in Section 8.1 and Section 8.2, and discuss the results in Section 8.3.

8.1 Comparison of Printers
We compare OCaml PrettyExpressive against the latest version (1.2.1) of Wadler/Leijen’s printer,
and the “camera ready version” of Bernardy’s printer13. This “camera ready version” consists of two
printers: the “naïve” variant, which is presented in the paper, and the “practical” implementation,
which has more features (such as unavoidable overflow handling) but suffers from exponential

12This change requires adjustments to many definitions and theorems, and we have done so for our Lean formalization. For
example, to make Theorem 6.2 hold, we need to keep indentation spaces in the definition of layouts (Section 4.1).
13We also tried other versions of Bernardy’s printer, such as the commit 006fa0e8, which is the version right before the <|>
operator was removed, and supposedly more optimized than the camera ready version. Unfortunately, we find that it has a
severe performance deficiency. When attempting to replicate the experiments in Bernardy [2017c], we find that formatting
the 10k-line-JSON file takes about 80 seconds, which is much slower than the 145 milliseconds reported in the paper.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 261. Publication date: October 2023.

261:24 Sorawee Porncharoenwase, Justin Pombrio, and Emina Torlak

Table 2. Comparison between PrettyExpressive in different configurations and other printers. For each

printer and configuration, the first column reports the running time, and the second column reports the line

count of the output layout. PrettyExpressive has an additional third column, where ✓ indicates that the

rendering to the output layout fits W and ✗ indicates that the rendering to the output layout is tainted.

“N/A” means the benchmark is not applicable. ✄ indicates that running the benchmark exceeds the timeout

of 60 seconds. “-” means the data is not collected. A grayed row indicates an output mismatch among the

printers/configurations. The bolded line count signals that in our manual inspection, the associated layout is

the prettiest.

Benchmark PrettyExpressive Wadler/Leijen Bernardy
default W (usually 100) W = 1000 Naïve Practical

Concat10k 0.000 s 1 ✗ 0.000 s 1 ✗ 0.002 s 1 N/A - 0.433 s 1
Concat50k 0.002 s 1 ✗ 0.002 s 1 ✗ 0.011 s 1 N/A - 14.626 s 1
FillSep5k 0.010 s 668 ✓ 0.010 s 668 ✓ 0.004 s 668 3.097 s 668 ✄ -
FillSep50k 0.190 s 6834 ✓ 0.190 s 6834 ✓ 0.035 s 6834 ✄ - ✄ -
Flatten8k 0.018 s 7986 ✓ 0.016 s 7986 ✓ 3.346 s 7986 N/A - N/A -
Flatten16k 0.036 s 15986 ✓ 0.037 s 15986 ✓ 18.816 s 15986 N/A - N/A -
SExpFull15 3.027 s 4107 ✓ 5.437 s 4107 ✓ 0.045 s 4107 0.647 s 4107 0.911 s 4107
SExpFull16 5.255 s 8246 ✓ 14.232 s 8246 ✓ 0.091 s 8246 1.251 s 8246 1.802 s 8246
RandFit1k 0.100 s 629 ✓ 0.229 s 629 ✓ 0.003 s 943 0.048 s 629 0.074 s 629
RandFit10k 1.047 s 7861 ✓ 4.420 s 7861 ✓ 0.037 s 10459 0.534 s 7861 0.855 s 7861
RandOver1k 0.058 s 1531 ✗ 0.904 s 1531 ✓ 0.005 s 1635 N/A - 0.065 s 1105
RandOver10k 0.405 s 15027 ✗ 16.553 s 15027 ✓ 0.108 s 16015 N/A - 1.103 s 7953
JSON1k 0.001 s 564 ✓ 0.001 s 564 ✓ 0.003 s 564 N/A - 0.005 s 564
JSON10k 0.007 s 5712 ✓ 0.007 s 5712 ✓ 0.018 s 5712 N/A - 0.097 s 5712
JSONW 0.001 s 721 ✗ 0.001 s 721 ✓ 0.002 s 721 N/A - 0.005 s 709

Table 3. The code formatter benchmarks. The table is in the same format as the PrettyExpressive column in

Table 2.

Benchmark W = 100 W = 1000

class-internal 0.325 s 5750 ✗ 0.307 s 5751 ✓
xform 0.372 s 5154 ✗ 0.417 s 5154 ✓

Benchmark W = 100 W = 1000

list 0.025 s 993 ✓ 0.025 s 993 ✓
hash 0.020 s 83 ✓ 0.020 s 83 ✓

time complexity when the DAG structure unfolds, as discussed in Section 2. We manually remove
the capability to customize the width limit from the latter to avoid the issue. Both variants are used
for the evaluation, since the naïve variant does not have necessary features for some benchmarks.
PrettyExpressive is instantiated with the cost factory in Section 7, with a page width limit

of 80 (unless indicated otherwise). We run PrettyExpressive twice with different computation
width limits (once with W = 100, unless indicated otherwise, and once with W = 1000), in order
to observe the effect of the tainting system and how it affects the performance.
The benchmarks (Table 2) are mostly taken from Bernardy [2017c], and we add a few more

to test basic constructs. While Leijen’s printer is expressive enough to handle all benchmarks
(due to the inclusion of align to support aligned concatenation in addition to constructs from the
traditional PPL), Bernardy’s printers are not applicable to benchmarks that require constructs from
the traditional PPL. Furthermore, Bernardy’s naïve printer is not applicable to benchmarks that
require extra features like unavoidable overflow handling.

In more detail, the benchmarks test the following kinds of documents:
Concat benchmarks test a long chain of concatenations, which are identified by Peyton-Jones

[1997] as a source of quadratic time complexity in Hughes’ printer.
FillSep benchmarks test the fillSep construct (also known as fill), which performs word

wrapping.
Flatten benchmarks test repeated flattening, as shown in Figure 17 in Appendix A.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 261. Publication date: October 2023.

A Pretty Expressive Printer (with Appendices) 261:25

SExpFull benchmarks are the last two data points from the “full tree” benchmark in Bernardy
[2017c]’s paper. They create complete binary trees and print them as S-expressions.

RandFit benchmarks [Bernardy 2017c] are similar to SExpFull, but use random Dyck paths to
generate random trees and filter only those that fit within the page width limit.

RandOver benchmarks are like RandFit with the opposite filtering.
JSON benchmarks are also from Bernardy [2017c]’s paper. They format large JSON files.
JSONW benchmark is the same as JSON1k but with a page width limit of 50 instead of 80, and

we further adjust PrettyExpressive’s default W from 100 to 60 to test the tainting system.

8.2 Racket Code Formatter
We evaluate the effectiveness of a Racket code formatter that uses the Racket PrettyExpressive
as its foundation. Racket [Felleisen et al. 2018] is a programmable programming language. Its
main syntax is S-expression based, but this can be customized via its #lang protocol to read an
arbitrary syntax. Even in the S-expression syntax, users can define custom forms via the macro
system. Our long-term plan for the code formatter is to make it extensible to support any syntax
and custom forms. PrettyExpressive is thus a natural choice as a foundational printer, due to its
expressiveness.

The code formatter currently supports only S-expression formatting. However, the task is already
challenging. While the S-expression syntax may look simple and uniform, Racket users employ a
variety of styles for different forms to make them look distinctive in order to improve readability.
Each function application, for example, has three possible styles (while most languages have two
function application styles). The search space of the code formatter is thus quite large.

The benchmarks (Table 3) consist of files of different sizes from the Racket language codebase14.
class-internal and xform are the two largest files. We use the code formatter to format these
files with the page width limit of 80. We run the code formatter twice, once with W = 100 and
once with W = 1000.

8.3 Results
Performance. The benchmarking results in Table 2 and Table 3 show that overall, PrettyExpres-

sive is sufficiently fast in practice. While not the fastest, it can process large, practical workloads
class-internal and xform under a second. Furthermore, it provides a performance guarantee
even on tricky inputs. The same is not true for other printers. The Flatten benchmarks work very
poorly for Wadler’s printer, and the FillSep benchmarks work very poorly for Bernardy’s printer.
Interestingly, Bernardy’s naïve printer is faster than its practical variant, even though the latter
is more optimized; this is due to the extra features that the practical printer needs to support.
PrettyExpressive, by contrast, is set to support these features from the start.

We note two interesting observations of PrettyExpressive. First, it performs poorly on SExpFull
relative to other printers. This is due to the memory pressure from memoization. Better engineering
effort may be able to alleviate this issue. Second, although the time complexity of Π𝑒 is 𝑂 (𝑛W4),
this worst case behavior happens only if Pareto frontiers are always full. In practice, this is not the
case15, as evidenced by the fact that increasingW tenfold does not multiply the running time by
104. On the contrary, increasing W does not affect the running time at all on most benchmarks.

Optimality. We find that PrettyExpressive is the prettiest compared to others, offering high
quality output when we use the cost factory described in Section 7. Table 2 shows (via line count)
that the output layouts in many benchmarks agree in all printers. The exceptions are RandFit,
14https://github.com/racket/racket/tree/master/racket/collects at commit 4f1a2bd4
15This observation also applies to Bernardy’s printers, which are also based on Pareto frontiers.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 261. Publication date: October 2023.

https://github.com/racket/racket/tree/master/racket/collects

261:26 Sorawee Porncharoenwase, Justin Pombrio, and Emina Torlak

RandOver, and JSONW benchmarks. Upon manual inspection, we find that the layouts produced
by PrettyExpressive are better. JSONW and RandOver are cases where there is an unavoidable
overflow, causing Bernardy’s printer to overflow more than necessary. Figure 18 in Appendix A
demonstrates this problem. RandFit and RandOver are cases where the greedy minimization and
the align construct in Leijen’s printer interact poorly, as discussed in Bernardy [2017c]’s paper.

It should also be noted that neither Leijen’s nor Bernardy’s printers support custom optimality
objectives, as their optimality objectives are integral to their algorithms. PrettyExpressive, by
contrast, allows users to customize optimality objective via the cost factory.
Lastly, we evaluate the effectiveness of the tainting system. For almost every benchmark that

has a tainted rendering (✗) with the default W, we find that using W = 1000 in an attempt to
avoid taintedness16 yields the same result, confirming the optimality of the output layout. The only
exception is the class-internal benchmark in Table 3, for which the output layouts are different
in one line and otherwise identical, because the greedy heuristic in the taint operation prunes the
optimal choice away. This demonstrates that despite being tainted, and thus no longer guaranteed
to be optimal, the output layout is still reasonable (at least with respect to the cost factory that we
employ and the heuristic to avoid bias described in Appendix C).

9 CONCLUSION
We have described Π𝑒 , an expressive printer that supports a variety of optimality objectives and is
practically efficient. We developed a framework for reasoning about the expressiveness of PPLs,
and we used this framework to guide the design of the PPL that Π𝑒 targets. By surveying existing
pretty printers, we have shown that Π𝑒 is well-placed in the design space of printers. Π𝑒 is proven
correct in the Lean theorem prover and implemented as a practical printer PrettyExpressive,
which powers a real-world code formatter for the Racket programming language. Our results show
that PrettyExpressive (and Π𝑒) is both pretty and fast.

DATA-AVAILABILITY STATEMENT
The latest version of the Racket PrettyExpressive17 and the Racket code formatter18 are available
on GitHub. The main artifact, which consists of the above softwares and:

• the Lean formalization (Sections 4 and 6)
• the Rosette proofs (Section 3)
• the OCaml PrettyExpressive (Section 7)
• the benchmarks to reproduce our evaluation (Section 8)

is available on Docker,19 with its source on GitHub.20 A snapshot of the artifact is available on
Zenodo [Porncharoenwase et al. 2023].

ACKNOWLEDGMENTS
We are thankful to the anonymous reviewers and the anonymous artifact reviewers for their very
helpful feedback. This work is supported by the National Science Foundation under Grant Nos.
CF-1651225, CCF-1836724, CNS-1844807, and by a gift from the VMware University Research Fund.

16Therefore, the Concat benchmarks do not count, since they are still tainted afterwards. The benchmarks are not interesting
anyway, since there is no choice in the documents, so the output layouts are always optimal.
17https://github.com/sorawee/pretty-expressive
18https://github.com/sorawee/fmt
19https://hub.docker.com/repository/docker/soraweep/pretty-expressive-oopsla23-artifact/
20https://github.com/sorawee/pretty-expressive-oopsla23-artifact

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 261. Publication date: October 2023.

https://github.com/sorawee/pretty-expressive
https://github.com/sorawee/fmt
https://hub.docker.com/repository/docker/soraweep/pretty-expressive-oopsla23-artifact/
https://github.com/sorawee/pretty-expressive-oopsla23-artifact

A Pretty Expressive Printer (with Appendices) 261:27

A AN ANALYSIS OF PRINTERS

group (text "AAA" <> nl) <>
nest 5 (group (text "B" <> nl <>

text "B" <> nl <> text "B"))

1 AAA |
2 B B B |

1 AAA B |
2 B|
3 B|

Fig. 16. A document in the traditional PPL and two of its corresponding layouts. Under the width limit of 5,

the first layout is optimal—it does not overflow and occupies a minimal number of lines. By contrast, the

second layout, which is produced by Wadler’s printer, overflows and does not occupy a minimal number of

lines.

let rec quadratic (n : int): doc =
if n = 0 then text "line"
else group (quadratic (n - 1) <> nl <> text "line")

Fig. 17. The function quadratic generates a document of size 𝑂 (𝑛) that Wadler’s algorithm takes 𝑂 (𝑛2) to
print at any width limit, due to repeated flattening.

text "xxxxxx" <$>
((text "aaa" <+> text "bbb") <|>
(text "aaa" <$> text "bbb"))

1 xxxxxx|
2 aaa|
3 bbb |

1 xxxxxx|
2 aaabbb|

Fig. 18. A document in the arbitrary-choice PPL and two of its corresponding layouts. Under the width limit

of 5, the first layout minimally overflows. By contrast, the second layout, which is produced by Bernardy’s

practical implementation, overflows more than necessary.

let rec mk (n : int): doc =
if n = 0 then text "X" <|> text "XX"
else let subdoc = mk (n - 1) in (chr n <+> subdoc <+> chr n) <|> subdoc

(a) The function mk generates a document whose DAG size is 𝑂 (𝑛). chr(𝑛) denotes a text whose content is a

string of length one that contains the 𝑛th character.

𝐶′ [𝐷𝑛, 𝑍 []] = 𝐶′ [chr(𝑛) <+> 𝐷𝑛−1 <+> chr(𝑛), 𝑍 []] <|> 𝐶′ [𝐷𝑛−1, 𝑍 []]
= 𝐶′ [chr(𝑛),𝐶′ [𝐷𝑛−1,𝐶

′ [chr(𝑛), 𝑍 []]]] <|> 𝐶′ [𝐷𝑛−1, 𝑍 []]
= 𝐶′ [chr(𝑛),𝐶′ [𝐷𝑛−1, 𝑍 [𝑛]]] <|> 𝐶′ [𝐷𝑛−1, 𝑍 []]

𝐶′ [𝐷𝑛−1, 𝑍 []] = 𝐶′ [chr(𝑛 − 1),𝐶′ [𝐷𝑛−2, 𝑍 [𝑛−1]]] <|> 𝐶′ [𝐷𝑛−2, 𝑍 []]
𝐶′ [𝐷𝑛−1, 𝑍 [𝑛]] = 𝐶′ [chr(𝑛 − 1),𝐶′ [𝐷𝑛−2,𝐶

′ [chr(𝑛 − 1), 𝑍 [𝑛]]]] <|> 𝐶′ [𝐷𝑛−2, 𝑍 [𝑛]]
= 𝐶′ [chr(𝑛 − 1),𝐶′ [𝐷𝑛−2, 𝑍 [𝑛−1,𝑛]]] <|> 𝐶′ [𝐷𝑛−2, 𝑍 [𝑛]]

(b) Let 𝐷𝑛 denote mk(𝑛). Yelland’s 𝐶′
function would transform the original document 𝐷𝑛 into a restricted

document where every aligned concatenation has a text as its left subdocument. However, the above

derivation shows that the transformation has a combinatorial explosion. Define 𝑍 [] to be ■ in Yelland’s paper

and 𝑍 [𝑥,𝑥1,...,𝑥𝑛] to be 𝐶
′ [chr(𝑥), 𝑍 [𝑥1,...,𝑥𝑛]]. The derivation shows that 𝐷𝑛−𝑘 is recursively transformed in

2𝑘 different contexts.

Fig. 19. A family of documents that illustrates how the transformation 𝐶′
in Yelland’s algorithm does not

necessarily preserve the sharing structure in the original document.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 261. Publication date: October 2023.

261:28 Sorawee Porncharoenwase, Justin Pombrio, and Emina Torlak

(* make an empty document of size n; n >= 1 *)
let rec make_dummy (n : int): doc =
if n = 1 then text ""
else text "" <+> make_dummy (n - 1)

(* make n lines; n >= 1 *)
let rec make_lines (n : int): doc =
if n = 1 then text ""
else text "" <$> make_lines (n - 1)

(* nth triangle number *)
let tri (n : int): int = n * (n + 1) / 2

let make_choices (k : int): doc =
let rec loop (i : int): doc =

let doc =
(make_lines i) <+>

text (String.make (tri (k - i + 1)) 'a')
in if i = 1 then doc else doc <|> loop (i - 1)

in loop k

let rec example (k : int): doc =
let dummy = make_dummy (k * k) in
let giant = make_choices k in
dummy <+> giant

(a) The function example produces a document that triggers

the worst-case time complexity of Yelland’s algorithm (that we

are aware of). For a fixed 𝑘 , giant is a document with 𝑘 choices,

where the 𝑖-th choice has 𝑖 lines and tri(𝑘 − 𝑖 + 1) characters
(tri is the triangle number function). Thus, its document tree

size is 𝑂 (𝑘2). By concatenating giant with dummy, which is an

“empty” document of size𝑂 (𝑘2), the total document tree size is

still 𝑂 (𝑘2). giant is designed so that it has 𝑘 segmented linear

cost functions. Thus, the aligned concatenation of dummy and
giant takes 𝑂 (𝑘3). By normalizing the document size to �̂�, we

obtain that the time complexity of the printer is 𝑂 (�̂�3/2).

5 10

20

40

60

2

3
4

5
6

7
8 9 10

column position

cost

(b) A plot of the piecewise linear cost func-

tion (lines along the red dots) for giant
in Figure 20a with 𝑘 = 10. The x-axis

is column positions at which giant will

be printed. The y-axis is cost of giant.
The plot consists of 𝑂 (𝑘) segmented cost

functions, where each segment is a lin-

ear function. For simplicity, we assume

that (1) the page width limit is 0; (2) there
is no cost for newlines; and (3) the cost

for each character past the page width

limit is 1. Let 𝑑𝑖 be the 𝑖-th choice in

giant. The cost function for 𝑑𝑖 then is

𝐶
𝑑𝑖
(𝑐) = 𝑖𝑐 + tri(𝑘 − 𝑖 + 1). These cost

functions intersect at 𝑐 = 2, . . . , 𝑘 . Thus,
the cost function for giant is unable to

prune any segments away.

Fig. 20. In Yelland’s algorithm, every choiceless document (in the arbitrary-choice PPL) 𝑑 has an associated

piecewise linear cost function 𝐶
𝑑
, where 𝐶

𝑑
(𝑐) determines the cost of 𝑑’s rendered layout at the column

position 𝑐 . A general document 𝑑 similarly has an associated piecewise linear cost function 𝐶𝑑 , which takes

the minimum of the cost functions from all choiceless documents that 𝑑 generates. The algorithm appears to

be efficient at first glance, since taking the minimum can prune away many segmented linear cost functions.

However, we are able to construct a document giant of size𝑂 (�̂�) whose cost function has𝑂 (
√
�̂�) segmented

linear cost functions, where �̂� is the tree size of the document. As the time complexity of the printer is𝑂 (�̂�𝑀)
where𝑀 is the maximum number of piecewise linear cost functions in a cost function, we obtain 𝑂 (�̂�3/2).

B SELECTED PROOF SKETCHES
Lemma 5.2. The arbitrary-choice PPL and Σ𝑒 are functionally complete.

Proof sketch. For the arbitrary-choice PPL with the evaluation function eval(·), let 𝐿 be
any non-empty set of layouts. For each 𝑙𝑖 ∈ 𝐿 where 𝑙𝑖 = [𝑠𝑖1, . . . , 𝑠𝑖|𝑙𝑖 |], we construct 𝑑𝑖 to be
text 𝑠𝑖1 <$> . . . <$> text 𝑠𝑖|𝑙𝑖 | . Finally, we construct 𝑑 to be 𝑑1 <|> . . . <|> 𝑑 |𝐿 | . We can see that
eval(𝑑) = 𝐿. The proof for Σ𝑒 PPL is similar, but we replace 𝑎 <$> 𝑏 with 𝑎 <> nl <> 𝑏. □

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 261. Publication date: October 2023.

A Pretty Expressive Printer (with Appendices) 261:29

Lemma 5.3. The traditional PPL is not functionally complete.

Proof sketch. It is not possible to construct a document in the traditional PPL that evaluates
to the set of layouts 𝐸 = {["a"], ["b"]}. To see why, let rmspace : L → Str be a function that joins
all lines in a layout into a single line, with all whitespaces removed, and lift rmspace to work on a
set of layouts (i.e., rmspace(𝐿) = {rmspace(𝑙) : 𝑙 ∈ 𝐿}. Let eval(·) be the evaluation function for
the traditional PPL. We can prove by induction that rmspace(eval(𝑑)) is a singleton set for any
document 𝑑 . In other words, all layouts in eval(𝑑) are the same, modulo whitespaces. However,
rmspace(𝐸) = {"a", "b"}, which is not a singleton set. Hence, by congruence, no document can
render to 𝐸.
Note that there are other sets of layouts that are the same modulo whitespaces, but can’t be

evaluated to by the traditional PPL. An example is synchronized differences of spacing across
multiple lines. □

Lemma 5.4. For each construct F in {text,<>, nl,<|>}, Σ𝑒 without F is not functionally complete.

Proof sketch. It is not possible to construct a document in each language in question that
evaluates to the following set of layouts

Σ𝑒 without text. {["a"]}, because all we can produce is whitespaces.

Σ𝑒 without <>. {["a", "b", "c"]}, because all we can produce is at most two lines.

Σ𝑒 without nl. {["a", "b"]}, because all we can produce is a single line.

Σ𝑒 without <|>. {["a"], ["b"]}, because all we can produce is a single layout. □

Theorem 5.12. Every construct in the traditional and arbitrary-choice PPLs is definable in Σ𝑒 .

Proof sketch. The following syntactic abstractions can be used to define the constructs:
• group is definable by M(𝛼1) = 𝛼1 <|> flatten 𝛼1
• <$> is definable byM(𝛼1, 𝛼2) = 𝛼1 <> nl <> 𝛼2.
• <+> is definable byM(𝛼1, 𝛼2) = 𝛼1 <> align 𝛼2.

The rest of the constructs are already in Σ𝑒 . □

Theorem 5.16. Given a PPL Σ and a construct F, if there exists two documents 𝑑1 and 𝑑2 in Σ and a

relation 𝑅 such that 𝐸Σ
𝑅
(𝑑1, 𝑑2), but ¬𝐸Σ∪{F}

𝑅
(𝑑1, 𝑑2), then F is not definable in Σ.

Proof sketch. Let eval𝑎 (·) and eval𝑏 (·) denote the evaluation functions for Σ and Σ ∪ {F},
respectively. We prove the contraposition. Assuming that F is definable in Σ, we need to prove that
for any 𝑑1, 𝑑2, and 𝑅, 𝐸Σ

𝑅
(𝑑1, 𝑑2) implies 𝐸Σ∪{F}

𝑅
(𝑑1, 𝑑2). Let 𝑑1, 𝑑2, and 𝑅 be arbitrary. We suppose that

for all context 𝐶 in Σ, 𝑅(eval𝑎 (𝐶 (𝑑1)), eval𝑎 (𝐶 (𝑑2))) holds, and need to prove that for all context 𝐶
in Σ ∪ {F}, 𝑅(eval𝑏 (𝐶 (𝑑1)), eval𝑏 (𝐶 (𝑑2))) holds.

Let 𝐶 be a context in Σ ∪ {F}. Because F is definable in Σ, we can perform a syntactic expansion
on 𝐶 to obtain a context 𝐶∗ in Σ such that eval𝑎 (𝐶∗ (𝑑)) = eval𝑏 (𝐶 (𝑑)) for all document 𝑑 in Σ.
Hence, it suffices to prove that 𝑅(eval𝑎 (𝐶∗ (𝑑1)), eval𝑎 (𝐶∗ (𝑑2))) holds, but this is our hypothesis
(instantiated with 𝐶∗). □

Theorem 5.17. The following is true:
• <> is not definable in the arbitrary-choice PPL.

• nest is not definable in the arbitrary-choice PPL.

• group is not definable in the arbitrary-choice PPL.

• <+> is not definable in the traditional PPL.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 261. Publication date: October 2023.

261:30 Sorawee Porncharoenwase, Justin Pombrio, and Emina Torlak

Proof sketch. In each proof, we need to show that F is not definable in Σ, where F and Σ are
the construct and the PPL in question. We do so by providing a counterexample, which consists
of documents 𝑑1 and 𝑑2, and the relation 𝑅. By induction, it can be shown that 𝐸Σ

𝑅
(𝑑1, 𝑑2). We will

further provide a counterexample context to show that ¬𝐸Σ∪{F}
𝑅

(𝑑1, 𝑑2). By Theorem 5.16, this
suffices to show that F is not definable in Σ.

<> is not definable in the arbitrary-choice PPL. Given maxWidth from Example 5.15, the coun-
terexample is 𝑑1 = text "a" <$> text "bb", 𝑑2 = text "aa" <$> text "bb", and 𝑅 = {(𝐿𝑎, 𝐿𝑏) :
maxWidth(𝐿𝑎) = maxWidth(𝐿𝑏)}. In particular, with 𝐶 (𝛼) = text "c" <> 𝛼 , we have that
maxWidth(eval(𝑑1)) = {2}, but maxWidth(eval(𝑑2)) = {3}.

nest is not definable in the arbitrary-choice PPL. Given maxWidth from Example 5.15, the coun-
terexample is 𝑑1 = text "bb" <$> text "a", 𝑑2 = text "cc" <$> text "bb" <$> text "a", and
𝑅 = {(𝐿𝑎, 𝐿𝑏) : maxWidth(𝐿𝑎) = maxWidth(𝐿𝑏)}. In particular, with 𝐶 (𝛼) = nest 1 𝛼 , we have
that maxWidth(eval(𝑑1)) = {2}, but maxWidth(eval(𝑑2)) = {3}.

group is not definable in the arbitrary-choice PPL. Let maxa : L → N be a function that finds the
maximum number of the character “a” in lines of the layout, and liftmaxa to work on a set of layouts.
The counterexample is 𝑑1 = text "a" <$> text "a", 𝑑2 = text "a" <$> text "a" <$> text "a",
and 𝑅 = {(𝐿𝑎, 𝐿𝑏) : maxa(𝐿𝑎) = maxa(𝐿𝑏)}. In particular, with 𝐶 (𝛼) = group 𝛼 , we have that
maxa(eval(𝑑1)) = {1, 2}, but maxa(eval(𝑑2)) = {1, 3}.

<+> is not definable in the traditional PPL. Let spaces : L → N be a function that counts the
number of spaces in a layout (not counting newlines), and lift spaces to work on a set of layouts. The
counterexample is 𝑑1 = text "a", 𝑑2 = text "aa", and 𝑅 = {(𝐿𝑎, 𝐿𝑏) : spaces(𝐿𝑎) = spaces(𝐿𝑏)}.
In particular, with𝐶 (𝛼) = 𝛼 <+> (text "b" <> nl <> text "c") , we have that spaces(eval(𝑑1)) =
{1}, but spaces(eval(𝑑2)) = {2}. □

Lemma 5.18. If Σ is not functionally complete, but Σ ∪ {C} is, then C is not definable in Σ.

Proof sketch. Because Σ is not functionally complete, there is a set of layouts 𝐿∗ that can’t be
evaluated to by any document in Σ. Since Σ ∪ {C} is functionally complete, there is a document
𝑑∗ (which necessarily contains C) that evaluates to 𝐿∗. Let 𝑑1 and 𝑑2 be any document in Σ, and
𝑅 = (2L × 2L) \ {(𝐿∗, 𝐿∗)}. Then 𝐸Σ

𝑅
(𝑑1, 𝑑2) holds trivially. However, with 𝐶 (𝛼) = 𝑑∗, we have that

¬𝐸Σ∪{C}
𝑅

(𝑑1, 𝑑2). This concludes the proof that C is not definable in Σ. □

Theorem 5.19. For any construct F of Σ𝑒 , F is not definable in Σ𝑒 \ {F}.

Proof sketch. The proofs for text, nl, <>, and <|> are applications of Lemma 5.2, Lemma 5.4,
and Lemma 5.18. The proofs for nest, flatten, and align are just like how we proved Theorem 5.17
for nest, group, and <+>. □

Theorem 6.10. The time complexity of Π𝑒 is 𝑂 (𝑛W4) where 𝑛 is the DAG size of the document.

Proof sketch. The most expensive operation in the printer is concatenation (via ConcatRSSet).
The operation resolves the left sub-document, resulting in a measure set whose size is at most W
according to Lemma 6.8. It then resolves the right sub-document in at most W different contexts.
Thus, there are at most W2 different measures from the right sub-document that the printer needs
to concatenate and prune.

Consider ⟨𝑑, 𝑐, 𝑖⟩ ⇓RS 𝑆 . 𝑑 can range over 𝑛 different values. 𝑐 and 𝑖 can range overW different
values that are under W. Hence, there are 𝑂 (𝑛W2) different contexts under the computation
width limit. Multiplying this with the maximum units of computation in the previous paragraph,

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 261. Publication date: October 2023.

A Pretty Expressive Printer (with Appendices) 261:31

we obtain that the time complexity due to resolving within W is 𝑂 (𝑛W4), assuming that the
resolver reuses memoized measure sets under the same context.
When 𝑑 is printed beyond W, however, it can be fully resolved at most once, because:
(1) While we would resolve both sub-documents of choice nodes, they would be all tainted, due

to Lemma 6.9. Because all tainted measure sets are promises, all computations are delayed.
The merge operation then chooses only one tainted measure set as the result, discarding the
other one.

(2) The document is properly shared, so under a given path, a document is encountered at most
once.

As a result, the time complexity due to printing over W is simply 𝑂 (𝑛). Combining both parts, we
obtain that the time complexity of Π𝑒 is 𝑂 (𝑛W4). □

Theorem 6.11. If a document 𝑑 is in the arbitrary-choice PPL, Π𝑒 can print 𝑑 in 𝑂 (𝑛W3).

Proof sketch. In the arbitrary-choice PPL, 𝑐 = 𝑖 is (mostly) maintained throughout the printing.
Hence, there is one less dimension to consider, leading to the time complexity of 𝑂 (𝑛W3). □

C DISCUSSION
In this section, we broadly discuss the design of our work.

C.1 Additional Constructs
PrettyExpressive supports additional constructs fail, newline, and reset. The Racket PrettyEx-
pressive further supports additional constructs full and cost. These constructs are out of scope
for the paper, and we leave their formalization as future work.

Failure. fail widens to the empty set, thus introducing the possibility that a printing could fail.
Furthermore, it is the identity for the operation <|>. fail makes Σ𝑒 more expressive because it is
impossible to make a document in Σ𝑒 evaluate to the empty set. In this sense, it could be said that Σ𝑒
is not truly “functionally complete,” but Σ𝑒 with fail is. Supporting fail can be done via rewriting
rules: every document with fail can be normalized to a semantically-equivalent document without
fail, or to a single fail. Hence, there is no need to modify the core printer to support the construct.

Generalized Newlines. newline𝑚 is a straightforward generalization of nl so that flattening it can
result in other possibilities besides a single space. When𝑚 is Some 𝑠 , the flattened result is text 𝑠 .
When𝑚 is None, the flattened result is fail. With this construct:

• nl is definable with newline (Some "␣").
• break from Leijen [2000]’s printer is definable with newline (Some "").
• hard_nl is definable with newline None. With hard_nl, singleLine from Bernardy [2017b]’s
practical printer is definable with flatten, given that the vertical concatenation uses hard_nl
for entering a newline.

Reset. reset 𝑑 resets the indentation level to 0 for 𝑑 . This is useful for formatting multiline
comments and here-string.

Fullness. full 𝑑 marks 𝑑 as full, which means there must be no more text after it in the same
line. The construct is especially useful for formatting line comments, as it is illegal to put a piece
of code after a line comment. A simpler variant of full is also implemented in Yelland’s printer
for the R code formatter [Yelland 2015]. Unlike other extensions, which can be supported without
significant changes to the core printer modification, full requires more involved changes.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 261. Publication date: October 2023.

261:32 Sorawee Porncharoenwase, Justin Pombrio, and Emina Torlak

• The measure set definition is now required to recognize the empty set (where we prefer a
tainted measure set over the empty set).

• The resolver would consume two additional boolean arguments, which indicate the fullness
status before and after the document.

• Merging two tainted measure sets must now keep both tainted measure sets, and we may
need to try both if the first one resolves to the empty set.

To keep the time complexity of the printer 𝑂 (𝑛W4), we rely on the fact that “emptiness” in
resolving (that is, resolving to the empty set) is independent from column positions and indentation
levels. Thus, even though we now need to try many tainted measure sets, a document can be tried
at most four times, which bounds the time complexity.

Cost. cost C 𝑑 adds a cost C to measures due to 𝑑 . This construct is not expressive in the
traditional sense, as it does not affect layout results. However, it allows us to make weighted choices,
so that we can prefer one style over another when all else is equal. Due to the flexibility of the cost
factory, it is even possible to make multidimensional weights.

C.2 Safety
As shown in the proof of Lemma 5.3, the traditional PPL is not functionally complete because all
layouts must have the same content, modulo whitespaces. While this property is restrictive for many
tasks as elaborated in the paper, it does provide a sort of safety guarantee that the layouts will not
be wildly different. <|>, however, allows us to violate this property. In fact, some arbitrary-choice
printers (e.g. a prototype of Bernardy’s printer [Bernardy 2015]) intend that <|> should be restricted
to maintain the property. Similarly, the inclusion of fail, newline, or full makes it possible to
evaluate to an empty set, but the PPLs without the essence of fail provide a safety guarantee that
an evaluation will never result in an empty set. Generally, the more expressive a language is, the
more properties it will break, and the more burden will be put on the users to carefully use the
constructs.
We argue that the spirit of these safety properties can still be accomplished in PPLs with a

functionally complete core. One possible approach is similar to Wadler’s treatment of <|> and
group: define high-level, “safe” constructs with just enough expressiveness to solve a domain-
specific task, based on the core, “unsafe” constructs, and then hide these “unsafe” constructs away
from the external interface. For example, one may hide <|>, and instead provide groupParen(𝑑) =
(text "(" <> 𝑑 <> text ")") <|> flatten 𝑑 , which evaluates to either𝑑 with parentheses wrapped
around, or the flattened𝑑 . The language as defined by the external interface is no longer functionally
complete, but enjoys the property that all layouts are the same modulo whitespaces and parentheses.
Another possible approach is to export the core, “unsafe” constructs, but perform a static analysis
to ensure that the document satisfies intended safety properties.

In any case, the expressive core constructs are what enable the advanced features that languages
may require to be rendered well. Thus, our view is that an expressive printer is the key. We should
start with an expressive albeit unsafe printer, rather than a safe but non-expressive one.

C.3 Memoization
While memoization is important to guarantee that Π𝑒 will not take exponential time, it is also the
performance bottleneck when the input document is large, due to too much memory allocation.
In PrettyExpressive, we employ a heuristic to reduce memory allocation by adding a metadata
memoization weight to each document node, which counts how long memoization has not been
performed on descendant nodes. When the weight reaches a limit (set to 6 in our implementation),

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 261. Publication date: October 2023.

A Pretty Expressive Printer (with Appendices) 261:33

we perform memoization on the node, and reset the weight to 0. This can significantly speed up
the performance of PrettyExpressive on some large documents.

C.4 Fusing Resolving and Rendering
One optimization in PrettyExpressive is to fuse together the resolving of a document to a measure
set and the rendering of a choiceless document to a layout. This is done by replacing the doc

component in a measure with a token function, which consumes a list of rendered tokens after the
document is placed, and returns a new list of rendered tokens. A similar technique was employed
by Podkopaev and Boulytchev [2015].

C.5 Handling Bias in the Presence of Taintedness
In Section 6, we see that the merge operation and thus the <|> operator is left-biased in the presence
of taintedness. When exceedingW is unavoidable, all text could be put in one line in the worst
case if all left sub-documents use the “horizontal styling”! The proper solution is to increaseW.
However, PrettyExpressive also implements a heuristic to infer a sub-document with the “vertical
styling.” The heuristic adds a metadata that overestimates the number of lines for each document
node. PrettyExpressive then uses a document with a larger overestimated number of lines as the
left sub-document in choice documents.

C.6 Partial Evaluation
Similar to how we can perform partial evaluation in programming languages, we can also perform
partial evaluation in PPL using rewriting rules. For example, a concatenation of two text can
immediately be partially evaluated to a single text. However, this partial evaluation must be done
with care to still preserve the sharing structure, since unconstrained rewriting may unfold the DAG
structure into a tree, as illustrated in Figure 19. It is also worth noting that the partial evaluation
may not necessarily preserve the semantics in the presence of taintedness. For example, one may
want to reduce a nest 𝑛 (text 𝑠) to text 𝑠 for any 𝑛 and 𝑠 , but when 𝑛 > W, the document will
definitely resolve to a tainted measure set, while the partially evaluated one does not necessarily.21

REFERENCES
Pablo R Azero Alcocer and S Doaitse Swierstra. 1998. Optimal pretty-printing combinators. https://web.archive.org/web/

20040911044443/http://www.cs.uu.nl/groups/ST/Software/PP/pabloicfp.ps.
Jean-Philippe Bernardy. 2015. Towards The Prettiest Printer. https://jyp.github.io/posts/towards-the-prettiest-printer.html.
Jean-Philippe Bernardy. 2017a. Disjunctionless. https://github.com/jyp/prettiest/pull/10.
Jean-Philippe Bernardy. 2017b. prettiest. https://github.com/jyp/prettiest/blob/5e7a12cf37bb01467485bbe1e9d8f272fa4f8cd5/

Text/PrettyPrint/Compact/Core.hs.
Jean-Philippe Bernardy. 2017c. A Pretty but Not Greedy Printer (Functional Pearl). Proc. ACM Program. Lang. 1, ICFP,

Article 6 (Aug. 2017), 21 pages. https://doi.org/10.1145/3110250
Olaf Chitil. 2005. Pretty Printing with Lazy Dequeues. ACM Trans. Program. Lang. Syst. 27, 1 (jan 2005), 163–184. https:

//doi.org/10.1145/1053468.1053473
Joëlle Coutaz. 1984. The box, a layout abstraction for user interface toolkits. (Dec. 1984). https://doi.org/10.1184/R1/6610382.

v1
Merijn De Jonge. 2002. Pretty-printing for software reengineering. In International Conference on Software Maintenance,

2002. Proceedings. IEEE, 550–559.
Leonardo DeMoura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Proceedings of the 14th International Conference

on Tools and Algorithms for the Construction and Analysis of Systems (TACAS). Budapest, Hungary, 337–340.
ESLint. 2014. Change no-comma-dangle to comma-dangle. https://github.com/eslint/eslint/issues/1350.
Matthias Felleisen. 1991. On the expressive power of programming languages. Science of Computer Programming 17, 1

(1991), 35–75. https://doi.org/10.1016/0167-6423(91)90036-W

21One may argue, however, that this semantic change is acceptable, because the change is for the better.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 261. Publication date: October 2023.

https://web.archive.org/web/20040911044443/http://www.cs.uu.nl/groups/ST/Software/PP/pabloicfp.ps
https://web.archive.org/web/20040911044443/http://www.cs.uu.nl/groups/ST/Software/PP/pabloicfp.ps
https://jyp.github.io/posts/towards-the-prettiest-printer.html
https://github.com/jyp/prettiest/pull/10
https://github.com/jyp/prettiest/blob/5e7a12cf37bb01467485bbe1e9d8f272fa4f8cd5/Text/PrettyPrint/Compact/Core.hs
https://github.com/jyp/prettiest/blob/5e7a12cf37bb01467485bbe1e9d8f272fa4f8cd5/Text/PrettyPrint/Compact/Core.hs
https://doi.org/10.1145/3110250
https://doi.org/10.1145/1053468.1053473
https://doi.org/10.1145/1053468.1053473
https://doi.org/10.1184/R1/6610382.v1
https://doi.org/10.1184/R1/6610382.v1
https://github.com/eslint/eslint/issues/1350
https://doi.org/10.1016/0167-6423(91)90036-W

261:34 Sorawee Porncharoenwase, Justin Pombrio, and Emina Torlak

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, Eli Barzilay, Jay McCarthy, and Sam
Tobin-Hochstadt. 2018. A Programmable Programming Language. Commun. ACM 61, 3 (March 2018), 62–71. https:
//doi.org/10.1145/3127323

John Hughes. 1995. The design of a pretty-printing library. In Advanced Functional Programming, Johan Jeuring and Erik
Meijer (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 53–96.

Oleg Kiselyov, Simon Peyton-Jones, and Amr Sabry. 2012. Lazy v. Yield: Incremental, Linear Pretty-Printing. In Programming

Languages and Systems, Ranjit Jhala and Atsushi Igarashi (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 190–206.
Daan Leijen. 2000. wl-pprint: The Wadler/Leijen Pretty Printer. https://hackage.haskell.org/package/wl-pprint.
Leonardo de Moura and Sebastian Ullrich. 2021. The Lean 4 Theorem Prover and Programming Language. In Automated

Deduction – CADE 28, André Platzer and Geoff Sutcliffe (Eds.). Springer International Publishing, Cham, 625–635.
Dereck C. Oppen. 1980. Prettyprinting. ACM Trans. Program. Lang. Syst. 2, 4 (Oct. 1980), 465–483. https://doi.org/10.1145/

357114.357115
Susan Owicki and David Gries. 1976. Verifying Properties of Parallel Programs: An Axiomatic Approach. Commun. ACM

19, 5 (May 1976), 279–285. https://doi.org/10.1145/360051.360224
Simon Peyton-Jones. 1997. A pretty printer library in Haskell. https://web.archive.org/web/20080221052958/http://research.

microsoft.com/Users/simonpj/downloads/pretty-printer/pretty.html. The identified mistakes are noted at https://github.
com/haskell/pretty/blob/50b70d1be6e17a644dc3b5c80592cf7c5b339fd9/Text/PrettyPrint/HughesPJ.hs.

Anton Podkopaev and Dmitri Boulytchev. 2015. Polynomial-Time Optimal Pretty-Printing Combinators with Choice. In
Perspectives of System Informatics, Andrei Voronkov and Irina Virbitskaite (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 257–265.

Sorawee Porncharoenwase, Luke Nelson, Xi Wang, and Emina Torlak. 2022. A Formal Foundation for Symbolic Evaluation
with Merging. Proc. ACM Program. Lang. 6, POPL, Article 47 (Jan. 2022), 28 pages. https://doi.org/10.1145/3498709

Sorawee Porncharoenwase, Justin Pombrio, and Emina Torlak. 2023. Artifact for A Pretty Expressive Printer. https:
//doi.org/10.5281/zenodo.8332960

Prettier. 2016. Technical Details. https://prettier.io/docs/en/technical-details.html.
S Doaitse Swierstra, Pablo R Azero Alcocer, and Joao Saraiva. 1999. Designing and Implementing Combinator Languages. In

Third Summer School on Advanced Functional Programming, volume 1608 of LNCS. Springer-Verlag, 150–206.
The Python Language Reference. 2010. Lexical analysis. https://docs.python.org/2.7/reference/lexical_analysis.html.
Emina Torlak and Rastislav Bodik. 2014. A Lightweight Symbolic Virtual Machine for Solver-Aided Host Languages. In

Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). Edinburgh,
United Kingdom, 530–541. https://doi.org/10.1145/2666356.2594340

Philip Wadler. 2003. A prettier printer. The Fun of Programming, Cornerstones of Computing (2003), 223–243.
Phillip Yelland. 2015. rfmt: A code formatter for R. https://github.com/google/rfmt.
Phillip Yelland. 2016. A New Approach to Optimal Code Formatting. Technical note for open source project rfmt;

https://github.com/google/rfmt.

Received 2023-04-14; accepted 2023-08-27

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 261. Publication date: October 2023.

https://doi.org/10.1145/3127323
https://doi.org/10.1145/3127323
https://hackage.haskell.org/package/wl-pprint
https://doi.org/10.1145/357114.357115
https://doi.org/10.1145/357114.357115
https://doi.org/10.1145/360051.360224
https://web.archive.org/web/20080221052958/http://research.microsoft.com/Users/simonpj/downloads/pretty-printer/pretty.html
https://web.archive.org/web/20080221052958/http://research.microsoft.com/Users/simonpj/downloads/pretty-printer/pretty.html
https://github.com/haskell/pretty/blob/50b70d1be6e17a644dc3b5c80592cf7c5b339fd9/Text/PrettyPrint/HughesPJ.hs
https://github.com/haskell/pretty/blob/50b70d1be6e17a644dc3b5c80592cf7c5b339fd9/Text/PrettyPrint/HughesPJ.hs
https://doi.org/10.1145/3498709
https://doi.org/10.5281/zenodo.8332960
https://doi.org/10.5281/zenodo.8332960
https://prettier.io/docs/en/technical-details.html
https://docs.python.org/2.7/reference/lexical_analysis.html
https://doi.org/10.1145/2666356.2594340
https://github.com/google/rfmt

	Abstract
	1 Introduction
	2 Related work
	2.1 Traditional Printers
	2.2 Arbitrary-Choice Printers
	2.3 Other Printers

	3 An overview of Pi e
	3.1 Documents in Sigma e
	3.2 Cost Factory
	3.3 W, the Computation Width Limit

	4 The semantics of Sigma e
	4.1 Layouts
	4.2 The Formal Semantics of Sigma e

	5 A framework to reason about expressiveness
	5.1 The Extended Semantics
	5.2 Functional Completeness
	5.3 Definability

	6 Our printer, Pi e
	6.1 Overview
	6.2 Measure
	6.3 Measure Set
	6.4 The Document Structure
	6.5 The Resolver
	6.6 Correctness of Pi e
	6.7 Handling Flattening

	7 Implementation
	8 Evaluation
	8.1 Comparison of Printers
	8.2 Racket Code Formatter
	8.3 Results

	9 Conclusion
	Acknowledgments
	A An analysis of printers
	B Selected proof sketches
	C Discussion
	C.1 Additional Constructs
	C.2 Safety
	C.3 Memoization
	C.4 Fusing Resolving and Rendering
	C.5 Handling Bias in the Presence of Taintedness
	C.6 Partial Evaluation

	References

